14.函數(shù)f(x)=sinx+cosx在點(diǎn)(0,f(0))處的切線方程為x-y+1=0.

分析 先求出f′(x),欲求出切線方程,只須求出其斜率即可,故先利用導(dǎo)數(shù)求出在x=0處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而問(wèn)題解決.

解答 解:∵f(x)=sinx+cosx
∴f′(x)=cosx-sinx
∴f'(0)=1,所以函數(shù)f(x)在點(diǎn)(0,f(0))處的切線斜率為1;
又f(0)=1,
∴函數(shù)f(x)=sinx+cosx在點(diǎn)(0,f(0))處的切線方程為:
y-1=x-0.即x-y+1=0.
故答案為:x-y+1=0.

點(diǎn)評(píng) 本小題主要考查學(xué)生會(huì)利用導(dǎo)數(shù)求曲線上過(guò)某點(diǎn)切線方程的斜率,考查直線的斜率、導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知向量$\overrightarrow{a}$=(sin$\frac{x}{2}$,-1),當(dāng)$\overrightarrow$=($\sqrt{3}$cos$\frac{x}{2}$+sin$\frac{x}{2}$,y)當(dāng)$\overrightarrow{a}$⊥$\overrightarrow$時(shí),有函數(shù)y=f(x)
(Ⅰ)若f(x)=$\frac{5}{6}$,求sin(2x+$\frac{π}{6}$)的值;
(Ⅱ)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿(mǎn)足cosC=$\frac{2b-c}{2a}$,求函數(shù)f(B)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知p:x2-1>0,則下列條件可以是p成立的充分不必要條件的是( 。
A.x<-0.1B.x≥1C.x<-1或x>1D.x<-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=log${\;}_{\frac{1}{2}}$$\frac{ax-2}{x-1}$在區(qū)間(2,4)上單調(diào)遞減,則實(shí)數(shù)α的取值范囤a<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在矩形ABCD中,|$\overrightarrow{AB}$|=2,|$\overrightarrow{AD}$|=1,點(diǎn)E,F(xiàn)分別是邊BC,CD的中點(diǎn),則($\overrightarrow{AE}$+$\overrightarrow{AF}$)•$\overrightarrow{AC}$=$\frac{15}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.(x2+$\frac{1}{x^2}$-2)3的展開(kāi)式中常數(shù)項(xiàng)為20. (結(jié)果用數(shù)字表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.?dāng)?shù)列{an}滿(mǎn)足a1=$\sqrt{3}$,an+1=[an]+$\frac{1}{\{{a}_{n}\}}$([an]與{an}分別表示an的整數(shù)部分與分?jǐn)?shù)部分),則a2014=(  )
A.3020+$\sqrt{3}$B.3020+$\frac{\sqrt{3}-1}{2}$C.$\sqrt{3}$+3018D.3018+$\frac{\sqrt{3}-1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.在等差數(shù)列{an}中,a1=2,公差為d,則“d=4”是“a1,a2,a3成等比數(shù)列”的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知數(shù)列{an}通項(xiàng)公式an=2n,其前n項(xiàng)和Sn,數(shù)列{bn}是以$\frac{1}{2}$為首項(xiàng)的等比數(shù)列,且${b_1}{b_2}{b_3}=\frac{1}{64}$.
(1)求數(shù)列{bn}的通項(xiàng)公式;
(2)記Cn=$\frac{1}{S_1}+\frac{1}{S_2}+…+\frac{1}{S_n}$,求Cn
(3)設(shè)數(shù)列{bn}的前n項(xiàng)和為T(mén)n,若對(duì)任意n∈N*不等式Cn≥$\frac{1}{4}t-\frac{1}{2}{T_n}$恒成立,求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案