【題目】已知曲線C的參數(shù)方程為 (φ為參數(shù)),以原點為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求曲線C的極坐標方程;
(Ⅱ)已知傾斜角為135°且過點P(1,2)的直線l與曲線C交于M,N兩點,求 的值.
【答案】解:(Ⅰ)曲線C的參數(shù)方程為 (φ為參數(shù)),
消去參數(shù)得曲線C的普通方程為x2+(y﹣3)2=9,即x2+y2﹣6y=0,
即x2+y2=6y,即ρ2=6ρsinθ,故曲線C的極坐標方程為ρ=6sinθ.
(Ⅱ)設直線 (t為參數(shù)),將此參數(shù)方程代入x2+y2﹣6y=0中,
化簡可得 ,顯然△>0;
設M,N所對應的參數(shù)分別為t1,t2,故 ,
∴ .
【解析】由三角函數(shù)中正、余弦平方和為1進行消參,得到平面直角坐標系方程,再改寫成極坐標方程,(2)根據(jù)題意,寫出直線l的參數(shù)方程,將參數(shù)方程代入曲線C的平面直角坐標方程,根據(jù)t的幾何意義,可得值.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n對任意的x>0恒成立,求實數(shù)n的最小值;
(2)若函數(shù)f(x)= ,求函數(shù)g(x)=f(x)+h(x)的值域.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”,為了了解人們對“延遲退休年齡政策”的態(tài)度,責成人社部進行調研,人社部從網上年齡在15~65歲的人群中隨機調查100人,調查數(shù)據(jù)的頻率分布直方圖和支持“延遲退休”的人數(shù)與年齡的統(tǒng)計結果如下:
年齡 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65] |
支持“延遲退休”的人數(shù) | 15 | 5 | 15 | 28 | 17 |
(1)由以上統(tǒng)計數(shù)據(jù)填2×2列聯(lián)表,并判斷是否95%的把握認為以45歲為界點的不同人群對“延遲退休年齡政策”的支持有差異;
45歲以下 | 45歲以上 | 總計 | |
支持 | |||
不支持 | |||
總計 |
(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動,現(xiàn)從這8人中隨機抽2人.
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率;
②記抽到45歲以上的人數(shù)為X,求隨機變量X的分布列及數(shù)學期望.
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設函數(shù)f(x)= x3+x2﹣3x,若方程|f(x)|2+t|f(x)|+1=0有12個不同的根,則實數(shù)t的取值范圍為( )
A.(﹣ ,﹣2)
B.(﹣∞,﹣2)
C.﹣ <t<﹣2
D.(﹣1,2)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設公比不為1的等比數(shù)列{an}的前n項和Sn , 已知a1a2a3=8,S2n=3(a1+a3+a5+…+a2n﹣1)(n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設bn=(﹣1)nlog2an , 求數(shù)列{bn}的前2017項和T2017 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面ABCD是平行四邊形,側面PAD是邊長為2的正三角形,AB=BD= ,PB=3.
(1)求證:平面PAD⊥平面ABCD;
(2)設Q是棱PC上的點,當PA∥平面BDQ時,求二面角A﹣BD﹣Q的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內角A,B,C所對的邊分別為a,b,c,若sinA=cos( ﹣B),a=3,c=2.
(1)求 的值;
(2)求tan( ﹣B)的值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com