已知兩點P1(4,9)和P2(6,3),求以P1P2為直徑的圓的方程,并判斷M(6,9)和Q(5,3)是在圓上、圓外,還是在圓內(nèi)?

答案:
解析:

  解:由已知得圓心坐標(biāo)C(5,6),半徑r=|P1P2|=·

  ∴圓的方程為(x-5)2+(y-6)2=10.

  ∵(6-5)2+(9-6)2=10,(5-5)2+(3-6)2=9<10,

  ∴點M在圓上,點Q在圓內(nèi).

  深化升華:從幾何意義上來看,點與圓的位置關(guān)系就是根據(jù)點到圓心的距離與半徑大小的關(guān)系來判斷.


提示:

先寫出圓的標(biāo)準(zhǔn)方程,再求出圓心和M、Q間的距離,比較與半徑的大小關(guān)系.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:013

已知兩點P1(4,9)、P2(6,3),以P1P2為直徑的圓記為圓P,則以下四點的圓P上的是

[  ]

A.M(6,9)

B.N(3,3)

C.Q(5,3)

D.O(0,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂必修二數(shù)學(xué)蘇教版 蘇教版 題型:044

已知兩點P1(4,9)和P2(6,3),求以P1P2為直徑的圓C的方程,并進(jìn)而求圓C上的點P到Q(x0,y0)點的距離d的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:設(shè)計必修二數(shù)學(xué)北師版 北師版 題型:044

如下圖,已知兩點P1(4,9)和P2(6,3),

(1)求以P1P2為直徑的圓的方程;

(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、在圓內(nèi)、還是在圓外?

(3)求以P1為圓心,|P1P2|為半徑的圓,并判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上、圓內(nèi)、還是圓外?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知兩點P1(4,9)和P2(6,3),(1)求以P1P2為直徑的圓的方程;(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上,在圓內(nèi),還是在圓外?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩點P1(4,9)和P2(6,3),(1)求以P1P2為直徑的圓的方程;(2)試判斷點M(6,9)、N(3,3)、Q(5,3)是在圓上,在圓內(nèi),還是在圓外?

查看答案和解析>>

同步練習(xí)冊答案