分析:(1)根據(jù)M(x
k,x
k+1)在函數(shù)
f(x)=的圖象上,可得
xk+1=,取倒數(shù),結(jié)合
ak=,可得數(shù)列{a
n}是以1為首項(xiàng),
為公差的等差數(shù)列,由此可求數(shù)列{a
n}通項(xiàng)公式;
(2)若數(shù)列{b
n}滿足b
n=7-2a
n=6-n,再進(jìn)行分類討論:當(dāng)n≤6時(shí),
Tn==;當(dāng)n>6時(shí),
Tn=15-=,從而可求數(shù)列{|b
n|}的前n項(xiàng)和T
n.
解答:解:(1)∵M(jìn)(x
k,x
k+1)在函數(shù)
f(x)=的圖象上
∴
xk+1=∴
=+∵
ak=∴
ak+1=ak+∵x
1=1,∴a
1=1
∴數(shù)列{a
n}是以1為首項(xiàng),
為公差的等差數(shù)列
∴
an=n+(2)若數(shù)列{b
n}滿足b
n=7-2a
n=6-n
∴當(dāng)n≤6時(shí),
Tn==;
當(dāng)n>6時(shí),
Tn=15-=∴數(shù)列{|b
n|}的前n項(xiàng)和T
n=
點(diǎn)評(píng):本題考查數(shù)列與函數(shù)的綜合,考查等差數(shù)列的通項(xiàng),考查數(shù)列的求和,解題的關(guān)鍵是確定數(shù)列為等差數(shù)列,從而正確運(yùn)用公式.