【題目】下列關(guān)于空間向量的命題中,正確的有______.

①若向量,與空間任意向量都不能構(gòu)成基底,則;

②若非零向量,,滿足,則有

③若,,是空間的一組基底,且,則,,四點共面;

④若向量,,,是空間一組基底,則,也是空間的一組基底.

【答案】①③④

【解析】

根據(jù)空間向量基本定理,能作為基底的向量一定是不共面的向量,由此分別分析選擇.

對于①:若向量與空間任意向量都不能構(gòu)成基底,只能兩個向量為共線向量,即,故①正確;

對于②:若非零向量,,滿足,,則不一定共線,故②錯誤;

對于③:若,是空間的一組基底,且,則,即,可得到,,,四點共面,故③正確;

對于④:若向量,,是空間一組基底,則空間任意一個向量,存在唯一實數(shù)組,使得,則,,也是空間的一組基底,故④正確.

故答案為:①③④

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極值.

(1)求常數(shù)k的值;

(2)求函數(shù)的單調(diào)區(qū)間與極值;

(3)設(shè),且, 恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點與橢圓的一個焦點重合,橢圓的左、右頂點分別為,是橢圓上一點,記直線的斜率為,且有.

1)求橢圓的方程;

2)若過點的直線與橢圓相交于不同兩點,且滿足為坐標(biāo)原點),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知高中學(xué)生的數(shù)學(xué)成績與物理成績具有線性相關(guān)關(guān)系,在一次考試中某班7名學(xué)生的數(shù)學(xué)成績與物理成績?nèi)缦卤恚?/span>

數(shù)學(xué)成績

88

83

117

92

108

100

112

物理成績

94

91

108

96

104

101

106

1)求這7名學(xué)生的數(shù)學(xué)成績的極差和物理成績的平均數(shù);

2)求物理成績對數(shù)學(xué)成績的線性回歸方程;若某位學(xué)生的數(shù)學(xué)成績?yōu)?/span>110分,試預(yù)測他的物理成績是多少?

下列公式與數(shù)據(jù)可供參考:

用最小二乘法求線性回歸方程的系數(shù)公式:,;

,,

.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)討論的單調(diào)性;

(II)當(dāng),是否存在實數(shù),使得,都有?若存在求出的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】十九大提出,加快水污染防治,建設(shè)美麗中國.根據(jù)環(huán)保部門對某河流的每年污水排放量(單位:噸)的歷史統(tǒng)計數(shù)據(jù),得到如下頻率分布表:

將污水排放量落入各組的頻率作為概率,并假設(shè)每年該河流的污水排放量相互獨立.

(1)求在未來3年里,至多1年污水排放量的概率;(2)該河流的污水排放對沿河的經(jīng)濟影響如下:當(dāng)時,沒有影響;當(dāng)時,經(jīng)濟損失為10萬元;當(dāng)時,經(jīng)濟損失為60萬元.為減少損失,現(xiàn)有三種應(yīng)對方案:

方案一:防治350噸的污水排放,每年需要防治費3.8萬元;

方案二:防治310噸的污水排放,每年需要防治費2萬元;

方案三:不采取措施.

試比較上述三種文案,哪種方案好,并請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)某種型號的農(nóng)機具零配件,為了預(yù)測今年7月份該型號農(nóng)機具零配件的市場需求量,以合理安排生產(chǎn),工廠對本年度1月份至6月份該型號農(nóng)機具零配件的銷售量及銷售單價進行了調(diào)查,銷售單價(單位:元)和銷售量(單位:千件)之間的6組數(shù)據(jù)如下表所示:

月份

1

2

3

4

5

6

銷售單價(元)

11.1

9.1

9.4

10.2

8.8

11.4

銷售量(千件)

2.5

3.1

3

2.8

3.2

2.4

1)根據(jù)16月份的數(shù)據(jù),求關(guān)于的線性回歸方程(系數(shù)精確到0.01);

2)結(jié)合(1)中的線性回歸方程,假設(shè)該型號農(nóng)機具零配件的生產(chǎn)成本為每件3元,那么工廠如何制定7月份的銷售單價,才能使該月利潤達到最大?(計算結(jié)果精確到0.1

參考公式:回歸直線方程

參考數(shù)據(jù):,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若函數(shù)存在最小值,且最小值大于,求實數(shù)的取值范圍;

(Ⅱ)若存在實數(shù),使得,求證:函數(shù)在區(qū)間上單調(diào)遞增。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某投資公司準(zhǔn)備在2020年年初將兩千萬投資東營經(jīng)濟開發(fā)區(qū)的示范區(qū)新型物流,商旅文化兩個項目中的一個之中.

項目一:新型物流倉是為企業(yè)提供倉儲、運輸、配送、貨運信息等綜合物流服務(wù)的平臺.現(xiàn)準(zhǔn)備投資建設(shè)10個新型物流倉,每個物流倉投資0.2千萬元,假設(shè)每個物流倉盈利是相互獨立的,據(jù)市場調(diào)研,到2022年底每個物流倉盈利的概率為,若盈利則盈利為投資額的40%,否則盈利額為0

項目二:購物娛樂廣場是一處融商業(yè)和娛樂于一體的現(xiàn)代化綜合服務(wù)廣場.據(jù)市場調(diào)研,投資到該項目上,到2022年底可能盈利投資額的50%,也可能虧損投資額的30%,且這兩種情況發(fā)生的概率分別為

1)若投資項目一,記為盈利的物流倉的個數(shù),求(用表示);

2)若投資項目二,記投資項目二的盈利為千萬元,求(用表示);

3)在(1)(2)兩個條件下,針對以上兩個投資項目,請你為投資公司選擇一個項目,并說明理由.

查看答案和解析>>

同步練習(xí)冊答案