函數(shù)f(x)=logax+1<a>0且a≠1)在[
1
2
,1]上的最小值是1,則 a=
3
2
3
2
分析:此函數(shù)為復(fù)合函數(shù),內(nèi)層函數(shù)為增函數(shù),故討論外層函數(shù)的單調(diào)性即可,根據(jù)單調(diào)性求函數(shù)的最小值,即可解得a的值
解答:解:當(dāng)a>1時,函數(shù)f(x)=logax+1<a>0且a≠1)在[
1
2
,1]上為增函數(shù),
∴x=
1
2
時,函數(shù)取得最小值1,即loga
1
2
+1)=1,解得a=
3
2

  當(dāng)0<a<1時,函數(shù)f(x)=logax+1<a>0且a≠1)在[
1
2
,1]上為減函數(shù),
∴x=1時,函數(shù)取得最小值1,即loga(1+1)=1,解得a=2>1,舍
綜上得a=
3
2

故答案為
3
2
點評:本題考查了復(fù)合函數(shù)單調(diào)性的判斷方法和利用函數(shù)單調(diào)性求函數(shù)最值的方法,對數(shù)函數(shù)的單調(diào)性及應(yīng)用
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、設(shè)函數(shù)f(x)=logαx(a>0)且a≠1,若f(x1•x2…x10)=50,則f(x12)+f(x22)+…f(x102)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log -
1
2
(x2-ax+3a)在[2,+∞)上是減函數(shù),則實數(shù)a的范圍是(  )
A、(-∞,4]
B、(-4,4]
C、(0,12)
D、(0,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log 2(x2-x-2)
(1)求f(x)的定義域;
(2)當(dāng)x∈[3,4]時,求f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)有三個命題:“①0<
1
2
<1.②函數(shù)f(x)=log 
1
2
x是減函數(shù).③當(dāng)0<a<1時,函數(shù)f(x)=logax是減函數(shù)”.當(dāng)它們構(gòu)成三段論時,其“小前提”是
(填序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)設(shè)函數(shù)f(x)的定義域為D,若存在非零實數(shù)l使得對于任意x∈M(M⊆D),有x+l∈D,且f(x+l)≥f(x),則稱f(x)為M上的高調(diào)函數(shù).現(xiàn)給出下列命題:
①函數(shù)f(x)=log 
1
2
x為(0,+∞)上的高調(diào)函數(shù);
②函數(shù)f(x)=sinx為R上的高調(diào)函數(shù);
③如果定義域為[-1,+∞)的函數(shù)f(x)=x2為[-1,+∞)上的高調(diào)函數(shù),那么實數(shù)m的取值范圍是[2,+∞);
其中正確的命題的個數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案