精英家教網 > 高中數學 > 題目詳情

【題目】設f(x)=|x﹣3|+|x﹣4|.
(1)求函數 的定義域;
(2)若存在實數x滿足f(x)≤ax﹣1,試求實數a的取值范圍.

【答案】
(1)解:∵

它與直線y=2交點的橫坐標為

∴不等式 的定義域為


(2)解:函數y=ax﹣1的圖象是過點(0,﹣1)的直線,

作出圖象,如下圖:

結合圖象可知,a取值范圍為


【解析】(1)求出f(x)=|x﹣3|+|x﹣4|與直線y=2交點的橫坐標為 ,由此能求出不等式 的定義域.(2)函數y=ax﹣1的圖象是過點(0,﹣1)的直線,作出圖象,結合圖象能求出實數a的取值范圍.
【考點精析】掌握絕對值不等式的解法是解答本題的根本,需要知道含絕對值不等式的解法:定義法、平方法、同解變形法,其同解定理有;規(guī)律:關鍵是去掉絕對值的符號.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,ABCD為直角梯形,∠C=∠CDA=90°,AD=2BC=2CD=2,P為平面ABCD外一點,且PB⊥BD.
(1)求證:PA⊥BD;
(2)若直線l過點P,且直線l∥直線BC,試在直線l上找一點E,使得直線PC∥平面EBD;
(3)若PC⊥CD,PB=4,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,某住宅小區(qū)的平面圖呈圓心角為的扇形,小區(qū)的兩個出入口設置在點及點處,且小區(qū)里有一條平行于的小路。

(1)已知某人從沿走到用了分鐘,從沿走到用了分鐘,若此人步行的速度為每分鐘米,求該扇形的半徑的長(精確到米)

(2)若該扇形的半徑為,已知某老人散步,從沿走到,再從沿走到,試確定的位置,使老人散步路線最長。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,過點P作圓O的割線PBA與切線PE,E為切點,連接AE、BE,∠APE的平分線與AE、BE分別交于點C、D,其中∠AEB=30°.

(1)求證:
(2)求∠PCE的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2019年,河北等8省公布了高考改革綜合方案將采取“3+1+2”模式,即語文、數學、英語必考,然后考生先在物理、歷史中選擇1門,再在思想政治、地理、化學、生物中選擇2門.為了更好進行生涯規(guī)劃,甲同學對高一一年來的七次考試成績進行統計分析,其中物理、歷史成績的莖葉圖如圖所示.

(1)若甲同學隨機選擇3門功課,求他選到物理、地理兩門功課的概率;

(2)試根據莖葉圖分析甲同學應在物理和歷史中選擇哪一門學科?并說明理由;

(3)甲同學發(fā)現,其物理考試成績(分)與班級平均分(分)具有線性相關關系,統計數據如下表所示,試求當班級平均分為50分時,其物理考試成績.

參考數據: ,,.

參考公式:,,(計算時精確到).

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,過點P作圓O的割線PBA與切線PE,E為切點,連接AE、BE,∠APE的平分線與AE、BE分別交于點C、D,其中∠AEB=30°.

(1)求證:
(2)求∠PCE的大。

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為、的直線與橢圓交于、兩點,是以為直角頂點的等腰直角三角形,則橢圓的離心率為__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知雙曲線的左右焦點分別為、,是雙曲線上一點,,的內切圓半徑為,則其漸近線方程是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=emx﹣lnx﹣2.
(1)若m=1,證明:存在唯一實數t∈( ,1),使得f′(t)=0;
(2)求證:存在0<m<1,使得f(x)>0.

查看答案和解析>>

同步練習冊答案