(本小題滿分12分)設函數(shù)
(1)若
,
①求
的值;
②存在
使得不等式
成立,求
的最小值;
(2)當
上是單調函數(shù),求
的取值范圍。
(參考數(shù)據(jù)
解:(Ⅰ)( i )
,定義域為
。 ………………………1分
處取得極值,
…………………………2分
即
……………………………4分
(ii)在
,
由
,
;
當
;
;
. ………………………6分
而
,
,
且
又
,
………………9分
(Ⅱ)當
,
①
;
②當
時,
,
③
,
從面得
;
綜上得,
. ………12分
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
=
+
,
a≠0且
a≠1.
(1)試就實數(shù)
a的不同取值,寫出該函數(shù)的單調增區(qū)間;
(2)已知當
x>0時,函數(shù)在(0,
)上單調遞減,在(
,
上單調遞增,求
a的值并寫出函數(shù)的解析式;
(3)記(2)中的函數(shù)圖象為曲線
C,試問是否存在經過原點的直線
l,使得
l為曲線
C的對稱軸?若存在,求出直線
l的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
x = 4是函數(shù)
的一個極值點,(
,
b∈R).
(Ⅰ)求
的值;
(Ⅱ)求函數(shù)
的單調區(qū)間;
(Ⅲ)若函數(shù)
有3個不同的零點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿
分13分)已知
,函數(shù)
.
(1)當
時討論函數(shù)的單調性;
(2)當
取何值時,
取最小值,證明你的結論.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
已知函數(shù)
.
(1)求
的極值;
(2)若
在
上恒成立,求
的取值范圍;
(3)已知
,且
,求證:
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分) 已知三次函數(shù)
=
,
、
為實數(shù),
=1,
曲線y=
在點(1,
)處切線的斜率為-6。
(1)求函數(shù)
的解析式;
(2)求函數(shù)
在(-2,2)上的最大值
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知函數(shù)
的減區(qū)間是
.
⑴試求m、n的值;
⑵求過點
且與曲線
相切的切線方程;
⑶過點A(1,t)是否存在與曲線
相切的3條切線,若存在求實數(shù)t的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知
,則
的值為
___▲___.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
如圖所示,水波的半徑以2m/s的速度向外擴張,當半徑為: 這水波面的圓面積的膨脹率是:
查看答案和解析>>