甲、乙兩人從4門課程中各選修2門,則甲、乙所選的課程中至少有1門不相同的選法共有 .
30
【解析】
試題分析:解:甲、乙所選的課程中至少有1門不相同的選法可以分為兩類:,1、甲、乙所選的課程中2門均不相同,甲先從4門中任選2門,乙選取剩下的2門,有 =6種.,2、甲.乙所選的課程中有且只有1門相同,分為2步:①從4門中先任選一門作為相同的課程,有=4種選法;②甲從剩余的3門中任選1門乙從最后剩余的2門中任選1門有C31C21=6種選法,由分步計數(shù)原理此時共有=24種.綜上,由分類計數(shù)原理,甲、所選的課程中至少有1門不相同的選法共有6+24=30種.故填寫30.
考點:分類計數(shù)原理
點評:本題考查排列組合知識,合理分類、正確分步是解題的關(guān)鍵
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com