已知函數(shù)是R上的奇函數(shù),若對(duì)于,都有, 時(shí),的值為  

A.              B.              C.1                D.2

 

【答案】

B

【解析】

試題分析:根據(jù)函數(shù)的奇偶性可得f(-2013)=-f(2013),根據(jù)函數(shù)的周期性可得f(2012)=f(0),f(2013)=f(1),結(jié)合x(chóng)∈[0,2)時(shí),f(x)=log2(x+1),代入可得答案.解:∵函數(shù)f(x)是定義在R上的奇函數(shù),∴f(-2013)=-f(2013),又∵x≥0,都有f(x+2)=f(x),,故f(2012)=f(0),f(2013)=f(1),又由當(dāng)x∈[0,2)時(shí),f(x)=log2(x+1),,∴f(2012)+f(-2013)=f(2012)-f(2013)=f(0)-f(1)=log21-log22=0-1=-1,故選C

考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)

點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用,函數(shù)奇偶性的性質(zhì),其中熟練掌握函數(shù)的奇偶性和周期性是解答的關(guān)鍵

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿(mǎn)足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:大連二十三中學(xué)2011學(xué)年度高二年級(jí)期末測(cè)試試卷數(shù)學(xué)(理) 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,2]上是增函

數(shù),則(     ).     

A.            B.

C.            D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年浙江省高三三月月考數(shù)學(xué)(理)試卷 題型:選擇題

已知函數(shù)是定義在R上的奇函數(shù),且,在[0,2]上是增函

數(shù),則下列結(jié)論:

(1)若,則;[來(lái)源:Z§xx§k.Com]

(2)若;

(3)若方程在[-8,8]內(nèi)恰有四個(gè)不同的根,則;

其中正確的有(     )

A.0個(gè)              B.1個(gè)             C.2個(gè)               D.3個(gè)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012屆浙江省高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷 題型:選擇題

已知定義在R上的奇函數(shù),滿(mǎn)足,且在區(qū)間[0,1]上是增函

數(shù),若方程在區(qū)間上有四個(gè)不同的根,則

(     )

(A)     (B)      (C)      (D)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(-2,2)上的函數(shù)f(x)滿(mǎn)足f(-m)+f(1-m)<0,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案