已知函數(shù)f(x)=-x3+3x2+9x+a.
(I)求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在區(qū)間[-2,2]上的最大值為20,求它在該區(qū)間上的最小值.
【答案】分析:(I)先求出函數(shù)f(x)的導(dǎo)函數(shù)f′(x),然后令f′(x)<0,解得的區(qū)間即為函數(shù)f(x)的單調(diào)遞減區(qū)間;
(II)先求出端點的函數(shù)值f(-2)與f(2),比較f(2)與f(-2)的大小,然后根據(jù)函數(shù)f(x)在[-1,2]上單調(diào)遞增,在[-2,-1]上單調(diào)遞減,得到f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,建立等式關(guān)系求出a,從而求出函數(shù)f(x)在區(qū)間[-2,2]上的最小值.
解答:解:(I)f′(x)=-3x2+6x+9.
令f′(x)<0,解得x<-1或x>3,
所以函數(shù)f(x)的單調(diào)遞減區(qū)間為(-∞,-1),(3,+∞).
(II)因為f(-2)=8+12-18+a=2+a,f(2)=-8+12+18+a=22+a,
所以f(2)>f(-2).
因為在(-1,3)上f′(x)>0,所以f(x)在[-1,2]上單調(diào)遞增,
又由于f(x)在[-2,-1]上單調(diào)遞減,
因此f(2)和f(-1)分別是f(x)在區(qū)間[-2,2]上的最大值和最小值,于是有22+a=20,解得a=-2.
故f(x)=-x3+3x2+9x-2,因此f(-1)=1+3-9-2=-7,
即函數(shù)f(x)在區(qū)間[-2,2]上的最小值為-7.
點評:本題主要考查導(dǎo)函數(shù)的正負(fù)與原函數(shù)的單調(diào)性之間的關(guān)系,即當(dāng)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當(dāng)導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.以及在閉區(qū)間上的最值問題等基礎(chǔ)知識,同時考查了分析與解決問題的綜合能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案