2.已知函數(shù)$f(x)=x+\frac{2}{x}$,利用定義證明:
(1)f(x)為奇函數(shù);
(2)f(x)在$[\sqrt{2}$,+∞)上是增加的.

分析 (1)求出函數(shù)的定義域,根據(jù)函數(shù)奇偶性的定義證明即可;(2)任取${x_1},{x_2}∈[\sqrt{2},+∞),且{x_1}<{x_2}$,根據(jù)函數(shù)單調(diào)性的定義證明即可.

解答 證明:(1)函數(shù)f(x)的定義域為(-∞,0)(0,+∞),
$f(-x)=-x+\frac{2}{-x}=-f(x)$,
所以$f(x)=x+\frac{2}{x}$為奇函數(shù)----------------------(5分)
(2)任取${x_1},{x_2}∈[\sqrt{2},+∞),且{x_1}<{x_2}$
則$f({x_1})-f({x_2})={x_1}+\frac{2}{x_1}-({x_2}+\frac{2}{x_2})$
=(x1-x2)+($\frac{2}{x_1}-\frac{2}{x_2})$=$\frac{{({x_1}-{x_2}){x_1}{x_2}}}{{{x_{_1}}{x_2}}}-\frac{{2({x_1}-{x_2})}}{{{x_1}{x_2}}}$
=$\frac{{({x_1}-{x_2})({x_1}{x_2}-2)}}{{{x_1}{x_2}}}$,
∵$\sqrt{2}≤{x_1}<{x_2}$,∴${x_1}-{x_2}<0,{x_{_1}}{x_2}>2,{x_1}{x_2}-2>0$,
所以f(x1)-f(x2)<0
即:f(x1)<f(x2),
所以f(x)在$[\sqrt{2}$,+∞)上是增加的.----------------------------(10分)

點評 本題考查了函數(shù)的奇偶性和單調(diào)性的定義,是一道基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.執(zhí)行如圖所示程序框圖所表示的算法,輸出的結(jié)果是80,則判斷框中應(yīng)填入( 。
A.n≤8B.n≥8C.n≤9D.n≥9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在區(qū)間[-2,2]上隨機取一個數(shù)x,使得|x+1|+|x-1|≤3成立的概率為(  )
A.$\frac{1}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={1,2,3,a},B={3,a2},則使得(∁RA)∩B=∅成立的a的值的個數(shù)為( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知函數(shù)f(x)為定義域在(0,+∞)上的增函數(shù),且滿足f(2)=1,f(xy)=f(x)+(y)
(1)求f(1),f(4)的值.
(2)如果f(8-x)-f(x-3)≤4,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當圓錐的側(cè)面積和底面積的比值是2時,圓錐軸截面的頂角等于( 。
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓C的中心在原點O,焦點在x軸上,離心率為$\frac{1}{2}$,橢圓C上的點到右焦點的最大距離為3.
(1)求橢圓C的標準方程.
(2)斜率存在的直線l與橢圓C交于A,B兩點,并且滿足以AB為直徑的圓過原點,求直線在y軸上截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$=(1,1),則與$\overrightarrow{a}$+2$\overrightarrow$方向相同的單位向量$\overrightarrow{e}$=($\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=9x-m•3x+1,在(0,+∞)的圖象恒在x軸上方,則m的取值范圍是(  )
A.m>2B.m≥2C.m≤2D.m<2

查看答案和解析>>

同步練習(xí)冊答案