函數(shù)的定義域為,且其圖象上任一點滿足方程,給出以下四個命題:
①函數(shù)是偶函數(shù);
②函數(shù)不可能是奇函數(shù);
,;
,.其中真命題的個數(shù)是(  )
A.1B.2 C.3D.4
B

試題分析:依題意知函數(shù)的圖象是雙曲線的一部分.
由函數(shù)的定義,函數(shù)的圖象可能是以下情況:

①                             ②

③                                  ④
從以上情況可以看出:①④表示偶函數(shù),②③表示奇函數(shù),命題①②不正確;
由圖①②可知,,故命題③正確;
由于雙曲線的漸近線為,所以命題④正確.
故選.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知命題表示的曲線是雙曲線;命題函數(shù)在區(qū)間上為增函數(shù),若“”為真命題,“”為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)試用函數(shù)單調(diào)性定義說明函數(shù)在區(qū)間上的增減性;
(3)若滿足:,試證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知其導(dǎo)函數(shù)的圖象如圖,則函數(shù)的極小值是( )
A.
B.
C.
D.c

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

定義[x]表示不超過x的最大整數(shù),例如:[1.5]=1,[-1.5]=-2,若f(x)=sin(x-[x]),則下列結(jié)論中
①y=f(x)是奇是函數(shù)②.y=f(x)是周期函數(shù),周期為2③..y=f(x)的最小值為0,無最大值④.y=f(x)無最小值,最大值為sin1.正確的序號為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是定義在(-2,2)上的增函數(shù),若f(m-1)<f(1-2m),則實數(shù)m的取值范圍為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

某商場2013年一月份到十二月份月銷售額呈現(xiàn)先下降后上升的趨勢,現(xiàn)有三種函數(shù)模型:
;②;③.
能較準(zhǔn)確反映商場月銷售額與月份x關(guān)系的函數(shù)模型為_________(填寫相應(yīng)函數(shù)的序號),若所選函數(shù)滿足,則=_____________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)上的最大值為p,最小值為q,則p+q=      

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x-,x∈(0,1].
(1)當(dāng)a=-1時,求函數(shù)y=f(x)的值域;
(2)若函數(shù)y=f(x)在x∈(0,1]上是減函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案