(本題滿分12分)已知拋物線的頂點在原點,對稱軸是x軸,拋物線上的點M(-3,m)到焦點的距離為5,求拋物線的方程和m的值.
y2=-8x,m=±2
解析試題分析:法一:根據(jù)已知條件,拋物線方程可設為y2=-2px(p>0),…………3分
則焦點F(-,0).…………5分
∵點M(-3,m)在拋物線上,且|MF|=5,…………8分
故,解得,…………11分
∴拋物線方程為y2=-8x,m=±2.…………12分
法二:設拋物線方程為y2=-2px(p>0),則準線方程為x=,…………3分
由拋物線定義,M點到焦點的距離等于M點到準線的距離,…………5分
∴有-(-3)=5,∴p=4.…………8分
∴所求拋物線方程為y2=-8x,…………10分
又∵點M(-3,m)在拋物線上,故m2=(-8)×(-3),∴m=±2.…………12分
考點:拋物線方程及性質(zhì)
點評:本題利用拋物線定義求解比較簡單
科目:高中數(shù)學 來源: 題型:解答題
如圖,已知是長軸為的橢圓上三點,點是長軸的一個頂點,過橢圓中心,且.
(1)建立適當?shù)淖鴺讼,求橢圓方程;
(2)如果橢圓上兩點使直線與軸圍成底邊在軸上的等腰三角形,是否總存在實數(shù)使?請給出證明.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的焦點坐標為,,且短軸一頂點B滿足,
(Ⅰ) 求橢圓的方程;
(Ⅱ)過的直線l與橢圓交于不同的兩點M、N,則△MN的內(nèi)切圓的面積是否存在最大值?若存在求出這個最大值及此時的直線方程;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分13分) 如圖,是離心率為的橢圓,
:()的左、右焦點,直線:將線段分成兩段,其長度之比為1 : 3.設是上的兩個動點,線段的中點在直線上,線段的中垂線與交于兩點.
(Ⅰ) 求橢圓C的方程;
(Ⅱ) 是否存在點,使以為直徑的圓經(jīng)過點,若存在,求出點坐標,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個端點與兩個焦
(Ⅰ)求橢圓的方程;
(Ⅱ)已知動直線與橢圓相交于、兩點. ①若線段中點的
橫坐標為,求斜率的值;②若點,求證:為定值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分)
給定拋物線,是拋物線的焦點,過點的直線與相交于、兩點,為坐標原點.
(Ⅰ)設的斜率為1,求以為直徑的圓的方程;
(Ⅱ)設,求直線的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com