【題目】已知直線: , : ,和兩點(0,1),(-1,0),給出如下結(jié)論:
①不論為何值時, 與都互相垂直;
②當變化時, 與分別經(jīng)過定點A(0,1)和B(-1,0);
③不論為何值時, 與都關(guān)于直線對稱;
④如果與交于點,則的最大值是1;
其中,所有正確的結(jié)論的個數(shù)是( )
A. 1 B. 2 C. 3 D. 4.
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知曲線C1的極坐標方程ρ2cos2θ=8,曲線C2的極坐標方程為θ= ,曲線C1 , C2相交于A,B兩點.以極點O為原點,極軸所在直線為x軸建立平面直角坐標系,已知直線l的參數(shù)方程為 (t為參數(shù)).
(1)求A,B兩點的極坐標;
(2)曲線C1與直線l分別相交于M,N兩點,求線段MN的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨機抽取某中學甲、乙兩班各10名同學,測量他們的身高(單位:cm),獲得身高數(shù)據(jù)的莖葉圖如圖7.
(1)根據(jù)莖葉圖判斷哪個班的平均身高較高;
(2)計算甲班的樣本方差;
(3)現(xiàn)從乙班這10名同學中隨機抽取兩名身高不低于173cm的同學,求身高為176cm的同學被抽中的概率。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓和雙曲線的公共焦點,是它們的一個公共點,且,則橢圓和雙曲線的離心率的倒數(shù)之和的最大值為( )
A. B. C. 3 D. 2
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地級市共有中學生,其中有學生在年享受了“國家精準扶貧”政策,在享受“國家精準扶貧”政策的學生中困難程度分為三個等次:一般困難、很困難、特別困難,且人數(shù)之比為,為進一步幫助這些學生,當?shù)厥姓O立“專項教育基金”,對這三個等次的困難學生每年每人分別補助元、元、元.經(jīng)濟學家調(diào)查發(fā)現(xiàn),當?shù)厝司芍淠晔杖胼^上一年每增加,一般困難的學生中有會脫貧,脫貧后將不再享受“精準扶貧”政策,很困難的學生有轉(zhuǎn)為一般困難學生,特別困難的學生中有轉(zhuǎn)為很困難學生.現(xiàn)統(tǒng)計了該地級市年到年共年的人均可支配年收入,對數(shù)據(jù)初步處理后得到了如圖所示的散點圖和表中統(tǒng)計量的值,其中年份取時代表年,取時代表年,……依此類推,且與(單位:萬元)近似滿足關(guān)系式.(年至年該市中學生人數(shù)大致保持不變)
(1)估計該市年人均可支配年收入為多少萬元?
(2)試問該市年的“專項教育基金”的財政預算大約為多少萬元?
附:對于一組具有線性相關(guān)關(guān)系的數(shù)據(jù),,…,,其回歸直線方程的斜率和截距的最小二乘估計分別為,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,從參加環(huán)保知識競賽的學生中抽出名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下,觀察圖形,回答下列問題:
(1)這一組的頻數(shù)、頻率分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(分及以上為及格)和平均數(shù)?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】定義:圓心到直線的距離與圓的半徑之比為直線關(guān)于圓的距離比.
(1)設圓求過(2,0)的直線關(guān)于圓的距離比的直線方程;
(2)若圓與軸相切于點(0,3)且直線= 關(guān)于圓的距離比,求此圓的的方程;
(3)是否存在點,使過的任意兩條互相垂直的直線分別關(guān)于相應兩圓的距離比始終相等?若存在,求出相應的點點坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某玩具所需成本費用為P元,且P=1 000+5x+x2,而每套售出的價格為Q元,其中Q(x)=a+ (a,b∈R),
(1)問:玩具廠生產(chǎn)多少套時,使得每套所需成本費用最少?
(2)若生產(chǎn)出的玩具能全部售出,且當產(chǎn)量為150套時利潤最大,此時每套價格為30元,求a,b的值.(利潤=銷售收入-成本).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正三棱錐A﹣BCD的外接球半徑R= ,P,Q分別是AB,BC上的點,且滿足 = =5,DP⊥PQ,則該正三棱錐的高為( )
A.
B.
C.
D.2
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com