16.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,且bsinA=$\sqrt{3}$acosB.
(1)求角B的大小;
(2)若a=2,△ABC的面積為$\sqrt{3}$,求b,c.

分析 (1)由正弦定理化簡已知等式可得:sinBsinA=$\sqrt{3}$sinAcosB,結合sinA≠0,可求tanB=$\sqrt{3}$,即可得B的值.
(2)由已知可得:bsinA=$\frac{\sqrt{3}}{2}$a,利用三角形面積公式可求ac=4,可求c,進而利用余弦定理可求b的值.

解答 解:(1)∵bsinA=$\sqrt{3}$acosB,
∴由正弦定理可得:sinBsinA=$\sqrt{3}$sinAcosB,
∵A為三角形內(nèi)角,sinA≠0,
∴得tanB=$\sqrt{3}$,
∴B=$\frac{π}{3}$.
(2)∵B=$\frac{π}{3}$,可得:bsinA=$\sqrt{3}$acosB=$\frac{\sqrt{3}}{2}$a,
∵a=2,△ABC的面積為$\sqrt{3}$=$\frac{1}{2}$bcsinA=$\frac{1}{2}$c×$\frac{\sqrt{3}}{2}$a,可得ac=4,
∴c=2,
∴由余弦定理可得:b=$\sqrt{{a}^{2}+{c}^{2}-2accosB}$=$\sqrt{{2}^{2}+{2}^{2}-2×2×2×\frac{1}{2}}$=2.

點評 本題主要考查了正弦定理,三角形面積公式,余弦定理在解三角形中的應用,考查了計算能力和轉化思想,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

18.已知$\frac{4sinθ-2cosθ}{3sinθ+5cosθ}$=$\frac{6}{11}$,求下列各式的值.
(1)tanθ;
(2)$\frac{5cos{\;}^{2}θ}{sin2θ+2sinθcosθ-3cos{\;}^{2}θ}$;
(3)1-4sin θcos θ+2cos2θ.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知圓C:(x-1)2+y2=2,點P是圓內(nèi)的任意一點,直線l:x-y+b=0.
(1)求點P在第一象限的概率;
(2)若b∈[-3,3],求直線l與圓C相交的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知$\frac{π}{2}<θ<π$,$sinθ=\frac{4}{5}$,則tan(π-θ)的值為( 。
A.$\frac{3}{4}$B.$\frac{4}{3}$C.$-\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知f(x)=sin(2x+$\frac{π}{6}$)+$\frac{3}{2}$,x∈R.
(1)求函數(shù)f(x)的最小正周期和單調(diào)增區(qū)間;
(2)寫出f(x)的圖象是由正弦曲線y=sinx經(jīng)過怎樣的變換得到的?
(3)若$x∈[{0,\frac{π}{4}}]$,求f(x)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知全集U={1,2,3,4,5,6,7,8},A={3,4,5},B={1,3,6},則集合{1,2,4,5,6,7,8}是( 。
A.A∪BB.A∩BC.UA∩∁UBD.UA∪∁UB

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.(1)函數(shù)$f(x)=log{{\;}_a^{(x+3)}}-1$(a>0且a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中mn>0.求$\frac{1}{m}+\frac{1}{n}$的最小值.
(2)已知$x,y∈(-\sqrt{3},\sqrt{3})$且xy=-1.求$s=\frac{3}{{3-{x^2}}}+\frac{12}{{12-{y^2}}}$的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知$sinα+cos(π-α)=\frac{1}{3}$,則sin2α的值為$\frac{1}{9}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設 a=log23,b=21.2,2,c=0.72.9,則( 。
A.b<a<cB.a<c<bC.c<b<aD.c<a<b

查看答案和解析>>

同步練習冊答案