設函數(shù)f(x)=數(shù)學公式 x3+bx2+cx(c<b<1)在x=1處取到一個極小值,且存在實數(shù)m,使f′(m)=-1,
①證明:-3<c≤-1;
②判斷f′(m-4)的正負并加以證明;
③若f(x)在x∈[m-4,1]上的最大值等于數(shù)學公式,求f(x)在x∈[m-4,1]上的最小值.

解:①求出f′(x)=x2+2bx+c;
∴f′(1)=1+2b+c=0?b=且f′(m)=m2+(-1-c)m+c=-1;
∴m2-(1+c)m+c+1=0,
∴△=(1+c)2-4(1+c)≥0,則c≥3或c≤-1;
又∵b=<1
∴c>-3;又b=>c,則有c<,∴-3<c≤-1.…(4分)
②f′(x)=x2+(-1-c)x+c=(x-c) (x-1),
其圖象開口向上,對稱軸為:-1<x0=<0;
∵f′(m)=-1<0,
∴-3<c<m<1;
則-7<m-4<-3?f′(m-4)>0;…(9分)
③由于f′(m-4)>0;
∵函數(shù)f(x)在x=1處取到一個極小值,
∴函數(shù)f(x)在(-∞,c)和(1,+∞)上為增函數(shù),在(c,1)上為減函數(shù),
∴m-4≤c,
f(x)在x∈[m-4,1]上的最大值等于f(c)= c3+•c2+c2=
∴c=-1,或c=4(舍去);
由f′(m)=-1,可得m=0,則f(x)= x3-x,(x∈[-4,1])
∴函數(shù)的最小值為f(-4)=.…(13分)
分析:①存在實數(shù)m,使f′(m)=-1,得到關于m的一元二次方程有實數(shù)根,用根的判別式列出關于b、c的不等式,結合函數(shù)在x=1處取到極小值,說明f′(1)=0,消去b得到關于c的一元二次不等式,最后結合c<b<1解出c取值范圍.
②函數(shù)的導數(shù)是關于x的二次函數(shù),其圖象開口向上,在區(qū)間(c,1)上取值為負,而f′(m)=-1為負,得到-3<c<m<1,從而得到-7<m-4<-3,因此f′(m-4)的符號為正.
③由②f′(m-4)>0且在x=1時函數(shù)f(x)取到極小值,得到函數(shù)f(x)的單調(diào)性:在(-∞,c)和(1,+∞)上為增函數(shù),在(c,1)上為減函數(shù).因此m-4≤c,f(x)在x∈[m-4,1]上的最大值為f(c),從而解出c=-1且m=0,得出函數(shù)的表達式為f(x)= x3-x,最后可得f(x)在x∈[-4,1]上的最小值.
點評:本題考查了利用導數(shù)研究函數(shù)的極值、函數(shù)在某點取得極值的條件和得用導數(shù)求閉區(qū)間上函數(shù)的最值等知識點,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)的定義域為R,若存在常數(shù)m>0,使|f(x)|≤m|x|對一切實數(shù)x均成立,則稱f(x)為F函數(shù).給出下列函數(shù):
①f(x)=0;②f(x)=x2;③f(x)=
2
(sinx+cosx)
;④f(x)=
x
x2+x+1
;其中是F函數(shù)的序號為
①④
①④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當x∈[0,1]時,f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當x∈[-1,0]時f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點的橫坐標由小到大構成一個無窮等差數(shù)列;
④關于x的方程f(x)=|x|在x∈[-3,4]上有7個不同的根.
其中真命題的個數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當a=1,b=2時,求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實數(shù)m的取值范圍;
(3)設k、c>0,當a=k2,b=(k+c)2時,記f(x)=f1(x);當a=(k+c)2,b=(k+2c)2時,記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學 來源:徐州模擬 題型:解答題

設函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個,求實數(shù)a的取值范圍;
(3)對于函數(shù)f(x)與g(x)定義域上的任意實數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案