設(shè)a∈R,函數(shù)f(x)=lnx-ax.
(I)求f(x)的單調(diào)區(qū)間;
(II)若函數(shù)f(x)無零點,求實數(shù)a的取值范圍.
【答案】
分析:(I)先確定函數(shù)f(x)的定義域,然后對函數(shù)f(x)求導(dǎo),根據(jù)導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減求出單調(diào)區(qū)間.
(II)當a≤0時,函數(shù)有零點;當a>0時,極大值小于0,函數(shù)沒有零點,由此可求實數(shù)a的取值范圍.
解答:解:(I)函數(shù)f(x)的定義域為(0,+∞),求導(dǎo)函數(shù)可得f′(x)=
①當a≤0時,f′(x)>0,∴f(x)在(0,+∞)上是增函數(shù)
②當a>0時,令f′(x)>0,則1-ax>0,ax<1,∵x>0,∴0<x<
令f′(x)<0,則1-ax<0,ax>1,x>
∴當a>0時f(x)在(0,
)上是增函數(shù),在(
,+∞)上是減函數(shù).
(II)當a≤0時,當x>0,且無限趨近于0時,f(x)<0,f(1)=-a≥0,故函數(shù)有零點
當a>0時,若極大值小于0,即f(
)=-lna-1<0,即a>
,則函數(shù)沒有零點.
∴函數(shù)f(x)無零點時,實數(shù)a的取值范圍是(
,+∞).
點評:本題主要考查函數(shù)單調(diào)性與其導(dǎo)函數(shù)的正負之間的關(guān)系,即當導(dǎo)函數(shù)大于0時原函數(shù)單調(diào)遞增,當導(dǎo)函數(shù)小于0時原函數(shù)單調(diào)遞減.