已知雙曲線=1(a>0,b>0)的左、右焦點(diǎn)分別為F1、F2,過點(diǎn)F2作與x軸垂直的直線與雙曲線一個(gè)交點(diǎn)為P,且∠PF1F2=,則雙曲線的漸近線方程為________.

 

y=±x

【解析】根據(jù)已知可得,|PF1|=且|PF2|=,故=2a,所以=2,,雙曲線的漸近線方程為y=±x.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):9-2用樣本估計(jì)總體(解析版) 題型:填空題

某中學(xué)從高三甲、乙兩個(gè)班中各選出7名學(xué)生參加數(shù)學(xué)競賽,他們?nèi)〉玫某煽?滿分100分)的莖葉圖如圖,其中甲班學(xué)生成績的眾數(shù)是85,乙班學(xué)生成績的中位數(shù)是83,則x+y的值為________.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-8曲線與方程(解析版) 題型:解答題

設(shè)M、N為拋物線C:y=x2上的兩個(gè)動(dòng)點(diǎn),過M、N分別作拋物線C的切線l1、l2,與x軸分別交于A、B兩點(diǎn),且l1與l2相交于點(diǎn)P,若|AB|=1.

(1)求點(diǎn)P的軌跡方程;

(2)求證:△MNP的面積為一個(gè)定值,并求出這個(gè)定值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:解答題

已知拋物線C:y2=2px(p>0)過點(diǎn)A(1,-2).

(1)求拋物線C的方程,并求其準(zhǔn)線方程;

(2)是否存在平行于OA(O為坐標(biāo)原點(diǎn))的直線l,使得直線l與拋物線C有公共點(diǎn),且直線OA與l的距離等于?若存在,求出直線l的方程;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-7拋物線(解析版) 題型:選擇題

已知點(diǎn)A(3,4),F(xiàn)是拋物線y2=8x的焦點(diǎn),M是拋物線上的動(dòng)點(diǎn),當(dāng)|AM|+|MF|最小時(shí),M點(diǎn)坐標(biāo)是(  )

A.(0,0) B.(3,2) C.(2,4) D.(3,-2)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:填空題

已知雙曲線x2-=1的左頂點(diǎn)為A1,右焦點(diǎn)為F2,P為雙曲線右支上一點(diǎn),則·的最小值為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-6雙曲線(解析版) 題型:選擇題

已知雙曲線中心在原點(diǎn)且一個(gè)焦點(diǎn)為F1(-,0),點(diǎn)P位于該雙曲線上,線段PF1的中點(diǎn)坐標(biāo)為(0,2),則雙曲線的方程是(  )

A.-y2=1 B.x2-=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:解答題

已知圓C過點(diǎn)P(1,1),且與圓M:(x+2)2+(y+2)2=r2(r>0)關(guān)于直線x+y+2=0對稱.

(1)求圓C的方程;

(2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值;

(3)過點(diǎn)P作兩條相異直線分別與圓C相交于A,B,且直線PA和直線PB的傾斜角互補(bǔ),O為坐標(biāo)原點(diǎn),試判斷直線OP和AB是否平行?請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):8-2直線的交點(diǎn)坐標(biāo)與距離公式(解析版) 題型:填空題

若直線l1:x+2my-1=0與l2:(3m-1)x-my-1=0平行,則實(shí)數(shù)m的值為________.

 

查看答案和解析>>

同步練習(xí)冊答案