已知函數(shù)f(x)是R上的減函數(shù),A(0,-2),B(-3,2)是其圖象上的兩點,那么不等式|f(x-2)|>2的解集是
(-∞,-1)∪(2,+∞)
(-∞,-1)∪(2,+∞)
分析:先去絕對值,然后根據(jù)f(0)=-2,f(-3)=2,以及函數(shù)的單調(diào)性把函數(shù)值不等式轉化為自變量不等式,從而達到解不等式|f(x-2)|>2的目的.
解答:解:∵|f(x-2)|>2,
∴f(x-2)>2或f(x-2)<-2,
又∵A(0,-2),B(-3,2)是其圖象上的兩點,
∴f(0)=-2,f(-3)=2,
∵函數(shù)f(x)是R上的減函數(shù),
∴x-2<-3或x-2>0,解得x<-1或x>2,
故答案為:(-∞,-1)∪(2,+∞)
點評:本題主要考查了函數(shù)的單調(diào)性,以及抽象函數(shù)的應用,同時考查轉化的思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點,那么|f(x+1)|<1的解集的補集是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上偶函數(shù),對于x∈R都有f(x+6)=f(x)+f(3)成立,f(x)在區(qū)間[0,3]上是增函數(shù),則f(x)在[-9,9]上零點個數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的奇函數(shù),且f(1)=1,那么f(-1)等于( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是R上的偶函數(shù).
(1)證明:f(x)=f(|x|)
(2)若當x≥0時,f(x)是單調(diào)函數(shù),求滿足f(x)=f(
x+3x+4
)
的所有x之和.

查看答案和解析>>

同步練習冊答案