已知函數(shù)f(x)=
x
1+x
;
(1)求f(2)與(
1
2
)f,f(3)與f(
1
3
)的值;
(2)由第(1)小題的結(jié)果,你能發(fā)現(xiàn)f(x)與f(
1
x
)之間有什么關(guān)系?請(qǐng)證明你的發(fā)現(xiàn);
(3)練習(xí)第(2)小題的結(jié)論,求:
f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014
)的值.
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)f(x)=
x
1+x
,易求f(2)與(
1
2
)f,f(3)與f(
1
3
)的值;
(2)由(1)可知,f(x)+f(
1
x
)=1;由f(x)+f(
1
x
)=
x
1+x
+
1
x
1+
1
x
即可證得結(jié)論成立;
(3)由f(x)+f(
1
x
)=1即可求得f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014
)的值.
解答: 解:(1)∵f(x)=
x
1+x
,
∴f(2)=
2
3
,f(
1
2
)=
1
2
1+
1
2
=
1
3
,f(3)=
3
4
,f(
1
3
)=
1
4
;
(2)由(1)可知,f(x)+f(
1
x
)=1.
證明:∵f(x)=
x
1+x

∴f(x)+f(
1
x
)=
x
1+x
+
1
x
1+
1
x
=
x
1+x
+
1
1+x
=
1+x
1+x
=1.
(3)由f(x)+f(
1
x
)=1得:
f(1)+f(2)+f(3)+…+f(2013)+f(2014)+f(
1
2
)+f(
1
3
)+…+f(
1
2013
)+f(
1
2014

=f(1)+[(f(2)+f(
1
2
))+(f(3)+f(
1
3
))+…+(f(2014)+f(
1
2014
))]
=
1
2
+2013=
4027
2
點(diǎn)評(píng):本題考查函數(shù)的求值,求得f(x)+f(
1
x
)=1是關(guān)鍵,考查推理、觀察與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)是以5為周期的奇函數(shù),f(-3)=-4且cosα=
1
2
,則f(4cos2α)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的恒不為0的函數(shù)y=f(x)滿足f(x1+x2)=f(x1)•f(x2),試證明:
(1)f(0)=1及f(x1-x2)=
f(x1)
f(x2)

(2)f(nx)=[f(x)]n(n∈N,n≥2);
(3)若x>0時(shí),f(x)>1,則函數(shù)f(x)在R上是增函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)向量
a
=(1,2),
b
=(2,1),若向量λ
a
+
b
與向量
c
=(-3,3)垂直,則λ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a∈R,設(shè)命題p:函數(shù)f(x)=ax是R上的單調(diào)遞減函數(shù);命題q:函數(shù)g(x)=lg(2ax2+2ax+1)的定義域?yàn)镽.若“p∨q”是真命題,“p∧q”是假命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題p:?x∈R,cos2x+sinx≥2m2-m-7;命題q:mx2+2x-1>o的解集非空.若“p且q”是假命題,p也是假命題,則實(shí)數(shù)m的取值范圍:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-x+2.(a∈R).
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的極值;
(2)若對(duì)x>0,有f′(x)≥x-
4
3
成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象與y軸的交點(diǎn)為(0,1),它在y軸右側(cè)的第一個(gè)最高點(diǎn)和第一個(gè)最低點(diǎn)的坐標(biāo)分別為(x0,2)和(x0+2π,-2).

(Ⅰ)求f(x)的解析式及x0的值;
(Ⅱ)求f(x)在[-π,π]上的單調(diào)區(qū)間;
(Ⅲ)若f(x)=
8
5
,x∈(0,
π
3
),求cosx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=8x-2-x+2的一個(gè)零點(diǎn)所在區(qū)間為(  )
A、(1,2)
B、(2,3)
C、(3,4)
D、(4,5)

查看答案和解析>>

同步練習(xí)冊(cè)答案