已知為等差數(shù)列,若并且他的前n項和有最大值,那么當取得最小正值時,n=( )
A.11 B 19 C 20 D 21
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源:2012-2013學年遼寧省沈陽市高三高考領(lǐng)航考試(二)理科數(shù)學試卷(解析版) 題型:解答題
已知 是等差數(shù)列,是公比為的等比數(shù)列,,記為數(shù)列的前項和,
(1)若是大于的正整數(shù),求證:;
(2)若是某一正整數(shù),求證:是整數(shù),且數(shù)列中每一項都是數(shù)列中的項;
(3)是否存在這樣的正數(shù),使等比數(shù)列中有三項成等差數(shù)列?若存在,寫出一個的值,并加以說明;若不存在,請說明理由;
查看答案和解析>>
科目:高中數(shù)學 來源:不詳 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知是等差數(shù)列,是公比為q的等比數(shù)列,,記為數(shù)列的前n項和。
(1)若(是大于2的正整數(shù))。求證:;
(2)若(i是某個正整數(shù),求證:q是整數(shù),且數(shù)列中的每一項都是數(shù)列中的項。
(3)是否存在這樣的正數(shù)q,使等比數(shù)列中有三項成等差數(shù)列?若存在,寫出一個q的值,并加以說明,若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學 來源:2013屆浙江杭州七校高二下期期中理科數(shù)學試卷(解析版) 題型:解答題
已知遞增等差數(shù)列滿足:,且成等比數(shù)列.
(1)求數(shù)列的通項公式;
(2)若不等式對任意恒成立,試猜想出實數(shù)的最小值,并證明.
【解析】本試題主要考查了數(shù)列的通項公式的運用以及數(shù)列求和的運用。第一問中,利用設(shè)數(shù)列公差為,
由題意可知,即,解得d,得到通項公式,第二問中,不等式等價于,利用當時,;當時,;而,所以猜想,的最小值為然后加以證明即可。
解:(1)設(shè)數(shù)列公差為,由題意可知,即,
解得或(舍去). …………3分
所以,. …………6分
(2)不等式等價于,
當時,;當時,;
而,所以猜想,的最小值為. …………8分
下證不等式對任意恒成立.
方法一:數(shù)學歸納法.
當時,,成立.
假設(shè)當時,不等式成立,
當時,, …………10分
只要證 ,只要證 ,
只要證 ,只要證 ,
只要證 ,顯然成立.所以,對任意,不等式恒成立.…14分
方法二:單調(diào)性證明.
要證
只要證 ,
設(shè)數(shù)列的通項公式, …………10分
, …………12分
所以對,都有,可知數(shù)列為單調(diào)遞減數(shù)列.
而,所以恒成立,
故的最小值為.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com