(理)若已知曲線C1方程為,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,,則直線AB的斜率為( )
A.1
B.
C.
D.
【答案】分析:先確定點B的坐標(biāo),再利用斜率為k(k>0)直線l與圓C2相切,即可求得直線AB的斜率.
解答:解:由題意,圓C2的圓心為雙曲線的右焦點
,圓的半徑為1
∴|BC2|=2
設(shè)B的坐標(biāo)為(x,y),(x>0)
∵雙曲線的右準(zhǔn)線為x=

∴x=1
∴B(1,0)
設(shè)AB的方程為y=k(x-1),即kx-y-k=0
∵斜率為k(k>0)直線l與圓C2相切
(k>0)
解得k=
故選C.
點評:本題考查圓與圓錐曲線的綜合,解題的關(guān)鍵是確定B的坐標(biāo),利用直線與圓相切建立方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2008•楊浦區(qū)二模)(理)在平面直角坐標(biāo)系xoy中,若在曲線C1的方程F(x,y)=0中,以(λx,λy)(λ為正實數(shù))代替(x,y)得到曲線C2的方程F(λx,λy)=0,則稱曲線C1、C2關(guān)于原點“伸縮”,變換(x,y)→(λx,λy)稱為“伸縮變換”,λ稱為伸縮比.
(1)已知曲線C1的方程為
x2
9
-
y2
4
=1
,伸縮比λ=2,求C1關(guān)于原點“伸縮變換”后所得曲線C2的方程;
(2)射線l的方程y=
2
2
x(x≥0)
,如果橢圓C1
x2
16
+
y2
4
=1
經(jīng)“伸縮變換”后得到橢圓C2,若射線l與橢圓C1、C2分別交于兩點A、B,且|AB|=
2
,求橢圓C2的方程;
(3)對拋物線C1:y2=2p1x,作變換(x,y)→(λ1x,λ1y),得拋物線C2:y2=2p2x;對C2作變換(x,y)→(λ2x,λ2y)得拋物線C3:y2=2p3x,如此進行下去,對拋物線Cn:y2=2pnx作變換(x,y)→(λnx,λny),得拋物線Cn+1:y2=2pn+1x,….若p1=1 , λn=(
1
2
)n
,求數(shù)列{pn}的通項公式pn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•崇明縣二模)(理)若已知曲線C1方程為x2-
y2
8
=1(x≥0,y≥0)
,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,|AB|=
3
,則直線AB的斜率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(理)若已知曲線C1方程為數(shù)學(xué)公式,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,數(shù)學(xué)公式,則直線AB的斜率為


  1. A.
    1
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年上海市華東師大一附中高三(下)開學(xué)數(shù)學(xué)試卷(解析版) 題型:選擇題

(理)若已知曲線C1方程為,圓C2方程為(x-3)2+y2=1,斜率為k(k>0)直線l與圓C2相切,切點為A,直線l與曲線C1相交于點B,,則直線AB的斜率為( )
A.1
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊答案