【題目】已知雙曲線C以F1(﹣2,0)、F2(2,0)為焦點,且過點P(7,12).
(1)求雙曲線C與其漸近線的方程;
(2)若斜率為1的直線l與雙曲線C相交于A,B兩點,且 (O為坐標原點).求直線l的方程.
【答案】
(1)解:設雙曲線C的方程為 ,半焦距為c,
則c=2, ,a=1,
所以b2=c2﹣a2=3,
故雙曲線C的方程為 .
雙曲線C的漸近線方程為
(2)解:設直線l的方程為y=x+t,將其代入方程 ,
可得2x2﹣2tx﹣t2﹣3=0(*)
△=4t2+8(t2+3)=12t2+24>0,若設A(x1,y1),B(x2,y2),
則x1,x2是方程(*)的兩個根,所以 ,
又由 ,可知x1x2+y1y2=0,
即x1x2+(x1+t)(x2+t)=0,可得 ,
故﹣(t2+3)+t2+t2=0,解得 ,
所以直線l方程為
【解析】(1)設出雙曲線C方程,利用已知條件求出c,a,解得b,即可求出雙曲線方程與漸近線的方程;(2)設直線l的方程為y=x+t,將其代入方程 ,通過△>0,求出t的范圍,設A(x1 , y1),B(x2 , y2),利用韋達定理,通過x1x2+y1y2=0,求解t即可得到直線方程.
科目:高中數學 來源: 題型:
【題目】下列命題中正確的是( )
A.函數y=sinx,x∈[0,2π]是奇函數
B.函數y=2sin( ﹣2x)在區(qū)間[﹣ ]上單調遞減
C.函數y=2sin( -2x)﹣cos( +2x)(x∈R)的一條對稱軸方程是x=
D.函數y=sinπx?cosπx的最小正周期為2,且它的最大值為1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=2 sinxcosx+2cos2x﹣1 (Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在區(qū)間[﹣ , ]上的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當a=1時,解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高三共有900名學生,高三模擬考之后,為了了解學生學習情況,用分層抽樣方法從中抽出若干學生此次數學成績,按成績分組,制成如下的頻率分布表:
組號 | 第一組 | 第二組 | 第二組 | 第四組 |
分組 | [70,80) | [80,90) | [90,100) | [100,110) |
頻數 | 6 | 4 | 22 | 20 |
頻率 | 0.06 | 0.04 | 0.22 | 0.20 |
組號 | 第五組 | 第六組 | 第七組 | 第八組 |
分組 | [110,120) | [120,130) | [130,140) | [140,150] |
頻數 | 18 | a | 10 | 5 |
頻率 | b | 0.15 | 0.10 | 0.05 |
(1)若頻數的總和為c,試求a,b,c的值;
(2)為了了解數學成績在120分以上的學生的心理狀態(tài),現(xiàn)決定在第六、七、八組中用分層抽樣方法抽取6名學生,在這6名學生中又再隨機抽取2名與心理老師面談,令第七組被抽中的學生數為隨機變量ξ,求隨機變量ξ的分布列和數學期望;
(3)估計該校本次考試的數學平均分.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= (其中e是自然對數的底數,a∈R). (Ⅰ)若曲線f(x)在x=l處的切線與x軸不平行,求a的值;
(Ⅱ)若函數f(x)在區(qū)間(0,1]上是單調函數,求a的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)在R上可導,其導函數為f′(x),且函數y=(1﹣x)f′(x)的圖象如圖所示,則下列結論中一定成立的是( )
A.函數f(x)有極大值f(2)和極小值f(1)
B.函數f(x)有極大值f(﹣2)和極小值f(1)
C.函數f(x)有極大值f(2)和極小值f(﹣2)
D.函數f(x)有極大值f(﹣2)和極小值f(2)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點H(﹣1,0),點P在y軸上,動點M滿足PH⊥PM,且直線PM與x軸交于點Q,Q是線段PM的中點.
(1)求動點M的軌跡E的方程;
(2)若點F是曲線E的焦點,過F的兩條直線l1 , l2關于x軸對稱,且l1交曲線E于A、C兩點,l2交曲線E于B、D兩點,A、D在第一象限,若四邊形ABCD的面積等于 ,求直線l1 , l2的方程.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com