一汽車廠生產(chǎn)A,B,C三類轎車,每類轎車均有舒適型和標(biāo)準(zhǔn)型兩種型號,某月產(chǎn)量如表(單位:輛):

 
轎車A
轎車B
轎車C
舒適型
100
150
z
標(biāo)準(zhǔn)型
300
450
600
 
按類型分層抽樣的方法在這個月生產(chǎn)的轎車中抽取50輛,其中有A類轎車10輛。
(1)求z的值;
(2)用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本。將該樣本看成一個總體,從中任取2輛,求至少有1輛舒適型轎車的概率.

(1);(2).

解析試題分析:(1)根據(jù)分層抽樣的相關(guān)理論,應(yīng)該保證樣本中三類轎車的比例與總體中三類轎車的比例保持一致,因此可設(shè)該廠本月生產(chǎn)轎車為n輛,列方程
;(2)由(1)中所求,以及分層抽樣的相關(guān)理論,可得樣本中的舒適型與標(biāo)準(zhǔn)型的轎車比例也為,所以可得樣本中抽取了2輛舒適性轎車,3輛標(biāo)準(zhǔn)型轎車,所求概率為至少有一輛舒適型轎車,可以考慮其對立事件:沒有一輛車是是舒適型轎車,即所有抽取的轎車都是標(biāo)準(zhǔn)型轎車,再由古典概型與對立事件概率的相關(guān)理論,可以求得至少有一輛舒適型轎車的概率為.
(1) 設(shè)該廠本月生產(chǎn)轎車為n輛,由題意得,  3分
所以  6分;
設(shè)所抽樣本中有m輛舒適型轎車,因用分層抽樣的方法在C類轎車中抽取一個容量為5的樣本,
所以,解得,也即抽取了2輛舒適型轎車,3輛標(biāo)準(zhǔn)型轎車  8分
所以從中任取2輛,至少有1輛舒適型轎車的概率為  12分.    
考點:1.分層抽樣;2.古典概型與對立事件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

從某校隨機(jī)抽取100名學(xué)生,獲得了他們一周課外閱讀時間(單位:小時)的數(shù)據(jù),整理得到數(shù)據(jù)分組及頻數(shù)分布表和頻率分布直方圖:

(1)從該校隨機(jī)選取一名學(xué)生,試估計這名學(xué)生該周課外閱讀時間少于12小時的概率;
(2)求頻率分布直方圖中的a,b的值;
(3)假設(shè)同一組中的每個數(shù)據(jù)可用該組區(qū)間的中點值代替,試估計樣本中的100名學(xué)生該周課外閱讀時間的平均數(shù)在第幾組(只需寫出結(jié)論)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,從參加環(huán)保知識競賽的學(xué)生中抽出60名,將其成績(均為整數(shù))整理后畫出的頻率分布直方圖如下:請觀察圖形,求解下列問題:

(1)79.5~89.5這一組的頻率、頻數(shù)分別是多少?
(2)估計這次環(huán)保知識競賽的及格率(60分及以上為及格)和平均分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計數(shù)據(jù):

年份
2004
2006
2008
2010
2012
需求量(萬噸)
236
246
257
276
286
 
(1)利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線方程x+
(2)利用(1)中所求出的直線方程預(yù)測該地2014年的糧食需求量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某高校在2012年的自主招生考試成績中隨機(jī)抽取100名學(xué)生的筆試成績,按成績分組得到的頻率分布表如下圖所示,

班號
分組
頻數(shù)
頻率
第1組

5
0.050
第2組


0.350
第3組

30

第4組

20
0.200
第5組

10
0.100
合計
100
1.00
 

(1)請先求出頻率分布表中①、②位置相應(yīng)的數(shù)據(jù),再在答題紙上完成下列頻率分布直方圖;
(2)為了能選拔出最優(yōu)秀的學(xué)生,高校決定在筆試成績高的第3、4、5組中用分層抽樣抽取6名學(xué)生進(jìn)入第二輪面試,求第3、4、5組每組各抽取多少名學(xué)生進(jìn)入第二輪面試?
(3)在(2)的前提下,學(xué)校決定在6名學(xué)生中隨機(jī)抽取2名學(xué)生接受A考官的面試,求:第4組至少有一名學(xué)生被考官A面試的概率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某中學(xué)的數(shù)學(xué)測試中設(shè)置了“數(shù)學(xué)與邏輯”和“閱讀與表達(dá)”兩個內(nèi)容,成績分為A、B、C、D、E五個等級。某班考生兩科的考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績等級為B的考生有10人  
(1)求該班考生中“閱讀與表達(dá)”科目中成績等級為A的人數(shù);
(2)若等級A、B、C、D、E分別對應(yīng)5分、4分、3分、2分、1分,該考場中有2人10分,3人9分,從這5人中隨機(jī)抽取2人,求2人成績之和為19分的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

學(xué)校從參加高一年級期中考試的學(xué)生中抽出50名學(xué)生,并統(tǒng)計了他們的數(shù)學(xué)成績(成績均為整數(shù)且滿分為100分),數(shù)學(xué)成績分組及各組頻數(shù)如下:
[40,50),2;[50,60),3;[60,70),14;[70,80),15;[80,90),12;[90,100],4.
(1)在給出的樣本頻率分布表中,求A,B,C,D的值;
(2)估計成績在80分以上(含80分)學(xué)生的比例;
(3)為了幫助成績差的學(xué)生提高數(shù)學(xué)成績,學(xué)校決定成立“二幫一”小組,即從成績在[90,100]的學(xué)生中選兩位同學(xué),共同幫助成績在[40,50)中的某一位同學(xué).已知甲同學(xué)的成績?yōu)?2分,乙同學(xué)的成績?yōu)?5分,求甲、乙兩同學(xué)恰好被安排在同一小組的概率.樣本頻率分布表如下:

分組
頻數(shù)
頻率
[40,50)
2
0.04
[50,60)
3
0.06
[60,70)
14
0.28
[70,80)
15[]
0.30
[80,90)
A
B
[90,100]
4
0.08
合計
C
D
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

某個容量為的樣本的頻率分布直方圖如下,則在區(qū)間上的數(shù)據(jù)的頻數(shù)為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

為迎接6月6日的“全國愛眼日”,某高中學(xué)生會從全體學(xué)生中隨機(jī)抽取16名學(xué)生,經(jīng)校醫(yī)用對數(shù)視力表檢查得到每個學(xué)生的視力狀況的莖葉圖(以小數(shù)點前的一位數(shù)字為莖,小數(shù)點后的一位數(shù)字為葉),如圖,若視力測試結(jié)果不低于5.0,則稱為“好視力”.

(1)寫出這組數(shù)據(jù)的眾數(shù)和中位數(shù);
(2)從這16人中隨機(jī)選取3人,求至少有2人是“好視力”的概率;
(3)以這16人的樣本數(shù)據(jù)來估計整個學(xué)校的總體數(shù)據(jù),若從該校(人數(shù)很多)任選3人,記X表示抽到“好視力”學(xué)生的人數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案