在平面坐標(biāo)系xOy中,拋物線的焦點(diǎn)F與橢圓的左焦點(diǎn)重合,點(diǎn)A在拋物線上,且,若P是拋物線準(zhǔn)線上一動(dòng)點(diǎn),則的最小值為(   )
A.6B.C.D.
C

試題分析:因?yàn)闄E圓的左焦點(diǎn)為,所以拋物線的方程為,其準(zhǔn)線為,設(shè)點(diǎn)A的橫坐標(biāo)為a,則根據(jù)拋物線的定義知,所以,進(jìn)而點(diǎn),坐標(biāo)原點(diǎn)O關(guān)于準(zhǔn)線對(duì)稱的點(diǎn)為,所以的最小值為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

長方形中,,.以的中點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的直角坐標(biāo)系.

(1) 求以、為焦點(diǎn),且過、兩點(diǎn)的橢圓的標(biāo)準(zhǔn)方程;
(2) 過點(diǎn)的直線交(1)中橢圓于兩點(diǎn),是否存在直線,使得以線段為直徑的圓恰好過坐標(biāo)原點(diǎn)?若存在,求出直線的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,以原點(diǎn)為圓心、橢圓的短半軸長為半徑的圓與直線相切.
(1)求橢圓的方程;
(2)設(shè),過點(diǎn)作與軸不重合的直線交橢圓于、兩點(diǎn),連結(jié)、分別交直線、兩點(diǎn).試問直線的斜率之積是否為定值,若是,求出該定值;若不是,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C: (a>b>0)的離心率為,且橢圓C上一點(diǎn)與兩個(gè)焦點(diǎn)F1,F(xiàn)2構(gòu)成的三角形的周長為2+2.
(1)求橢圓C的方程;
(2)過右焦點(diǎn)F2作直線l 與橢圓C交于A,B兩點(diǎn),設(shè),若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓的方程為,離心率為,且短軸一端點(diǎn)和兩焦點(diǎn)構(gòu)成的三角形面積為1,拋物線的方程為,拋物線的焦點(diǎn)F與橢圓的一個(gè)頂點(diǎn)重合.
(1)求橢圓和拋物線的方程;
(2)過點(diǎn)F的直線交拋物線于不同兩點(diǎn)A,B,交y軸于點(diǎn)N,已知的值.
(3)直線交橢圓于不同兩點(diǎn)P,Q,P,Q在x軸上的射影分別為P′,Q′,滿足(O為原點(diǎn)),若點(diǎn)S滿足,判定點(diǎn)S是否在橢圓上,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,F1F2分別為橢圓C的左、右兩個(gè)焦點(diǎn),A、B為兩個(gè)頂點(diǎn),該橢圓的離心率為的面積為.

(1)求橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)作與AB平行的直線交橢圓于P、Q兩點(diǎn),,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如果表示焦點(diǎn)在軸上的橢圓,那么實(shí)數(shù)的取值范圍是(    )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)分別是橢圓的左、右焦點(diǎn),點(diǎn)在橢圓上,線段的中點(diǎn)在軸上,若,則橢圓的離心率為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,已知F是橢圓的左焦點(diǎn),P是橢圓上一點(diǎn),PF⊥x軸,OP∥AB(O為坐標(biāo)原點(diǎn)),則該橢圓的離心率是(   )
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案