已知點(diǎn)O為正方體ABCD-A1B1C1D1底面ABCD的中心,則下列結(jié)論正確的是

[  ]
A.

直線OA1⊥平面AB1C1

B.

直線OA1∥平面CB1D1

C.

直線OA1⊥直線AD

D.

直線OA1∥直線BD1

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)(甲)如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成的角的大;
(2)求側(cè)面A1B與底面所成二面角的大;
(3)求點(diǎn)C到側(cè)面A1B的距離.
(乙)在棱長為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A'F⊥C'E;
(2)當(dāng)三棱錐B'-BEF的體積取得最大值時(shí),求二面角B'-EF-B的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知棱長等于2
3
的正方體ABCD-A1B1C1D1,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O的球面上任意一點(diǎn),有以下判斷:①該正方體外接球的體積是36π;②異面直線OE與B1C所成角為90°;③PE長的最大值為3+
6
;④過點(diǎn)E的平面截球O的截面面積的最小值為6π.其中所有正確判斷的序號是
①②③
①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省安陽三中高三(上)第二次月考數(shù)學(xué)試卷(文科)(解析版) 題型:填空題

已知棱長等于的正方體ABCD-A1B1C1D1,它的外接球的球心為O,點(diǎn)E是AB的中點(diǎn),點(diǎn)P是球O的球面上任意一點(diǎn),有以下判斷:①該正方體外接球的體積是36π;②異面直線OE與B1C所成角為90°;③PE長的最大值為;④過點(diǎn)E的平面截球O的截面面積的最小值為6π.其中所有正確判斷的序號是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年新教材高考數(shù)學(xué)模擬題詳解精編試卷(8)(解析版) 題型:解答題

(甲)如圖,已知斜三棱柱ABC-A1B1C1的側(cè)面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=,又AA1⊥A1C,AA1=A1C.
(1)求側(cè)棱A1A與底面ABC所成的角的大小;
(2)求側(cè)面A1B與底面所成二面角的大。
(3)求點(diǎn)C到側(cè)面A1B的距離.
(乙)在棱長為a的正方體OABC-O'A'B'C'中,E,F(xiàn)分別是棱AB,BC上的動(dòng)點(diǎn),且AE=BF.
(1)求證:A'F⊥C'E;
(2)當(dāng)三棱錐B'-BEF的體積取得最大值時(shí),求二面角B'-EF-B的大。ńY(jié)果用反三角函數(shù)表示).

查看答案和解析>>

同步練習(xí)冊答案