設(shè)x1、x2(x1≠x2)是函數(shù)f(x)=ax3+bx2-a2x(a>0)的兩個極值點.
(Ⅰ)若x1=-1,x2=2,求函數(shù)f(x)的解析式;
(Ⅱ)若|x1|+|x2|=2
2
,求b的最大值;
(Ⅲ)設(shè)函數(shù)g(x)=f'(x)-a(x-x1),x∈(x1,x2),當(dāng)x2=a時,求證:|g(x)|≤
1
12
a(3a+2)2
分析:(Ⅰ)求出f′(x),因為x1、x2是函數(shù)f(x)的兩個極值點,而x1=-1,x2=2所以得到f′(-1)=0,f′(2)=0代入求出a、b即可得到函數(shù)解析式;
(Ⅱ)因為x1、x2是導(dǎo)函數(shù)f′(x)=0的兩個根,利用根與系數(shù)的關(guān)系對已知進行變形得到a和b的等式,求出b的范圍,設(shè)p(a)=3a2(6-a),求出其導(dǎo)函數(shù),利用導(dǎo)數(shù)研究函數(shù)的增減性得到p(a)的極大值,開方可得b的最大值;
(Ⅲ)因為x1,x2是方程f'(x)=0的兩根,所以f'(x)=3a(x-x1)(x-x2).根據(jù)兩個之積和x2=a求出x1,將x1和導(dǎo)函數(shù)代入到g(x)=f'(x)-a(x-x1)求出g(x)的絕對值,根據(jù)x的范圍化簡絕對值,再利用二次函數(shù)最值的方法得證即可.
解答:解 (Ⅰ)∵f(x)=ax3+bx2-a2x(a>0)
∴f'(x)=3ax2+2bx-a2(a>0)
依題意有
f′(-1)=0
f′(2)=0
,
3a-2b-a2=0
12a+4b-a2=0
(a>0)

解得
a=6
b=-9

∴f(x)=6x3-9x2-36x.
(Ⅱ)∵f'(x)=3ax2+2bx-a2(a>0),
依題意,x1,x2是方程f'(x)=0的兩個根,且|x1|+|x2|=2
2

∴(x1+x22-2x1x2+2|x1x2|=8.
(-
2b
3a
)2-2•(-
a
3
)+2|-
a
3
|=8
,
∴b2=3a2(6-a).
∵b2≥0,
∴0<a≤6.
設(shè)p(a)=3a2(6-a),則p'(a)=-9a2+36a.
由p'(a)>0得0<a<4,由p'(a)<0得a>4.
即:函數(shù)p(a)在區(qū)間(0,4]上是增函數(shù),在區(qū)間[4,6]上是減函數(shù),
∴當(dāng)a=4時,p(a)有極大值為96,
∴p(a)在(0,6]上的最大值是96,
∴b的最大值為4
6

(Ⅲ)證明:∵x1,x2是方程f'(x)=0的兩根,
∴f'(x)=3a(x-x1)(x-x2).
x1x2=-
a
3
,x2=a,
x1=-
1
3

|g(x)|=|3a(x+
1
3
)(x-a)-a(x+
1
3
)|=|a(x+
1
3
)[3(x-a)-1]|

∵x1<x<x2,即-
1
3
<x<a

|g(x)|=a(x+
1
3
)(-3x+3a+1)

∴|g(x)|=-3a(x+
1
3
)(x-
3a+1
3
)
=-3a(x-
a
2
)2+
3a3
4
+a2+
1
3
a
3a3
4
+a2+
1
3
a
=
a(3a+2)2
12

∴|g(x)|
a
12
(3a+2)2
成立.
點評:考查學(xué)生會用待定系數(shù)法求函數(shù)解析式,會利用導(dǎo)數(shù)研究函數(shù)的極值,掌握不等式的基本證明方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax2+bx+c(a>0),且f(1)=-
a2

(1)求證:函數(shù)f(x)有兩個零點.
(2)設(shè)x1,x2是函數(shù)f(x)的兩個零點,求|x1-x2|的范圍.
(3)求證:函數(shù)f(x)的零點x1,x2至少有一個在區(qū)間(0,2)內(nèi).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x1,x2為y=f(x)的定義域內(nèi)的任意兩個變量,有以下幾個命題:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
f(x1)-f(x2)
x1-x2
>0;
f(x1)-f(x2)
x1-x2
<0.
其中能推出函數(shù)y=f(x)為增函數(shù)的命題為
①③
①③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省2007年五校聯(lián)考調(diào)研數(shù)學(xué)試卷(理科)-蘇教版 題型:044

設(shè)x1,x2的兩個極值點,f(x)的導(dǎo)函數(shù)是

(1)如果x1<2<x2<4,求證:

(2)如果|x1|<2,|x2-x1|=2,求b的取值范圍;

(3)如果a≥2,且x2-x1=2,x∈(x1,x2)時,函數(shù)的最小值為h(a),求h(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=-x-x3,設(shè)x1+x2≤0,給出下列不等式,其中正確不等式的序號是(   )

f(x1)f(-x1)≤0       ②f(x2)f(-x2)>0       ③f(x1)+f(x2)≤f(-x1)+f(-x2)④f(x1)+f(x2)≥f(-x1)+f(-x2)

A.①③                  B.①④                  C.②③                  D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x1,x2為y=f(x)的定義域內(nèi)的任意兩個變量,有以下幾個命題:
①(x1-x2)[f(x1)-f(x2)]>0;
②(x1-x2)[f(x1)-f(x2)]<0;
f(x1)-f(x2)
x1-x2
>0;
f(x1)-f(x2)
x1-x2
<0.
其中能推出函數(shù)y=f(x)為增函數(shù)的命題為______.

查看答案和解析>>

同步練習(xí)冊答案