設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2.求數(shù)列{an}的通項(xiàng)公式.
分析:變形可得數(shù)列{bn+2}是首項(xiàng)為4,公比為2的等比數(shù)列,可得an+1-an=2n+1-2,累加可得.
解答:解:∵bn+1=2bn+2,∴bn+1+2=2(bn+2),即
bn+1+2
bn+2
=2

又b1+2=a2-a1=4,所以數(shù)列{bn+2}是首項(xiàng)為4,公比為2的等比數(shù)列,
所以bn+2=4×2n-1,解得bn=2n+1-2,即an+1-an=2n+1-2,
故可得a2-a1=22-2,a3-a2=23-2,…,an-an-1=2n-2,
累加可得an-a1=(22+23+…+2n)-2(n-1)
=
2(1-2n-1)
2
-2n+2=2n-2-2n+2=2n-2n
點(diǎn)評(píng):本題考查等比關(guān)系的確定,涉及累加法求數(shù)列的通項(xiàng)公式,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2,
(1)求證:數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比),
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2.
(1)求b1、b2;
(2)求證數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比);
(3)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2,
(1)求證:數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比),
(2)求數(shù)列{an}的通項(xiàng)公式.
(3)數(shù)列{an+1}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年山東省青島市即墨一中高二(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)a1=2,a2=4,數(shù)列{bn}滿足:bn=an+1-an,bn+1=2bn+2,
(1)求證:數(shù)列{bn+2}是等比數(shù)列(要指出首項(xiàng)與公比),
(2)求數(shù)列{an}的通項(xiàng)公式.

查看答案和解析>>

同步練習(xí)冊(cè)答案