【答案】
分析:(1)求導(dǎo),令導(dǎo)數(shù)等于零,解方程,再根據(jù)f′(x),f(x)隨x的變化情況,即可求出函數(shù)的單調(diào)區(qū)間;
(2)根據(jù)(1),對k-1是否在區(qū)間[0,1]內(nèi)進行討論,從而求得f(x)在區(qū)間[0,1]上的最小值;
(3)要使當(dāng)
時,對任意x∈[0,1],都有g(shù)(x)≥λ成立,則有g(shù)(x)
min≥λ成立,利用導(dǎo)數(shù)求出g(x)
min,即可得到實數(shù)λ的取值范圍.
解答:解:(1)f′(x)=(x-k+1)e
x,
令f′(x)=0,得x=k-1,
f′(x),f(x)隨x的變化情況如下:
∴f(x)的單調(diào)遞減區(qū)間是(-∞,k-1),f(x)的單調(diào)遞增區(qū)間(k-1,+∞);
(2)當(dāng)k-1≤1,即k≤2時,函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞增,
∴f(x)在區(qū)間[1,2]上的最小值為f(1)=e-ek;
當(dāng)1<k-1<2,即2<k<3時,由(1)知,f(x)在區(qū)間[1,k-1]上單調(diào)遞減,f(x)在區(qū)間(k-1,2]上單調(diào)遞增,
∴f(x)在區(qū)間[1,2]上的最小值為f(k-1)=-e
k-1;
當(dāng)k-1≥2,即k≥3時,函數(shù)f(x)在區(qū)間[1,2]上單調(diào)遞減,
∴f(x)在區(qū)間[1,2]上的最小值為f(2)=(2-k)e
2;
綜上所述,當(dāng)k≤2時,f(x)的最小值為(1-k)e;
當(dāng)k≥3時,f(x)的最小值為(2-k)e
2;
當(dāng)2<k<3時,f(x)的最小值為-e
k-1;(8分)
∴f(x)
min=
.
(3)g(x)=f(x)+f'(x)=(2x-2k+1)e
x∴g′(x)=(2x-2k+3)e
x當(dāng)
時,對任意x∈[0,
),g′(x)<0,x∈(
,1],g′(x)>0,
∴g(x)在[0,
]上單調(diào)減,在(
,1]上單調(diào)增,
∴g(x)
min=g(
)=
要使當(dāng)
時,對任意x∈[0,1],都有g(shù)(x)≥λ成立,則有g(shù)(x)
min≥λ成立,
∴實數(shù)λ的取值范圍為
.(12分)
點評:本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和在閉區(qū)間上的最值問題,對方程f'(x)=0根是否在區(qū)間[0,1]內(nèi)進行討論,體現(xiàn)了分類討論的思想方法,屬于中檔題.