已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實根,求m的取值范圍.
(1)令
n
=(x,y),則有cos
3
4
π
=
m
n
|m
|•|
n|
=-
2
2

m
n
=-1
|
m
|•|
n
|=
2
,又向量
m
=(1,1)
,故其模為
2
,
則向量
n
人模為1.則有x2+y2=1
(1)向量
n
與向量
q
=(1,0)的夾角為
π
2
,故有
n
q
=0,即x=0,故y=±1
m
n
=-1
故y=-1,則
n
=(0,-1),
 向量
p
=(cosA,2cos2
C
2
)
,即
p
=(cosA,1+cosC)

又A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列 故B=
π
3

|
n
+
p
|2=cos2A+cos2C=cos2A+cos2
3
-A)=1+
1
2
cos(2A+
π
3

由A∈(0,
3
),得2A+
π
3
∈(
π
3
,
3
)得cos(2A+
π
3
)∈[-1,
1
2

|
n
+
p
|2∈[
1
2
,
5
4
)故|
n
+
p
|∈[
2
2
5
2

(2∵A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,∴B=
π
3

∴f(A)=sin2A-2(sinA+cosA)+a2=2sinAcosA-2(sinA+cosA)+a2 
令t=sinA+cosA=
2
sin(A+
π
4
),則2sinAcosA=t2-1
由于A∈(0,
π
3
],A+
π
4
∈(
π
4
12
],故t=
2
sin(A+
π
4
)∈(1,
2
]
故有f(A)=t2-1-2t+a2=t2-2t+a2-1,t∈(1,
2
]
當(dāng)t=
2
時取到最大值為1-2
2
+a2
又f(A)的最大值為5-2
2
,故1-2
2
+a2=5-2
2

故a2=4,又a>0,故a=2
又關(guān)于的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實根
即方程sin(2x+
π
3
)=
m
2
[0,
π
2
]
上有相異實根
因為x∈[0,
π
2
]
,故y=sin(2x+
π
3
)
在(0,
π
12
)上是增函數(shù),在(
π
12
,
π
2
)上是減函數(shù)
方程sin(2x+
π
3
)=
m
2
[0,
π
2
]
上有相異實根
m
2
∈[
3
2
,1),
故m∈[
3
,2).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
夾角為
3
4
π
,且
m
n
=-1

(1)若向量
n
與向量
q
=(1,0)的夾角為
π
2
,向量
p
=(cosA,2cos2
C
2
)
,其中A,C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,試求|
n
+
p
|的取值范圍.
(2)若A、B、C為△ABC的內(nèi)角,且A,B,C依次成等差數(shù)列,A≤B≤C,設(shè)f(A)=sin2A-2(sinA+cosA)+a2,f(A)的最大值為5-2
2
,關(guān)于x的方程sin(ax+
π
3
)=
m
2
(a>0)
[0,
π
2
]
上有相異實根,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(
3
sin
x
4
,1),
n
=(cos
x
4
,cos2
x
4
)
,記f(x)=
m
n
,
(1)求f(x)的值域和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C的對邊分別是a、b、c,且滿足(2a-c)cosB=bcosC,若f(A)=
1+
3
2
,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(λ+1,1),
n
=(λ+2,2)
,若(
m
+
n
)⊥(
m
-
n
)
⊥(
m
-
n
)
,則λ=
-3
-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)已知向量
m
=(1,1)
,向量
n
與向量
m
的夾角為
4
,且
m
n
=-1

(1)求向量
n
;
(2)若向量
n
q
=(1,0)
共線,向量
p
=(2cos2
C
2
,cosA)
,其中A、C為△ABC的內(nèi)角,且A、B、C依次成等差數(shù)列,求|
n
+
p
|
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(1,1)
,向量
n
與向量
m
的夾角為
4
,且
n
m
=-1

(1)求向量
n
的坐標;
(2)若向量
n
與向量
i
的夾角為
π
2
,向量
p
=(x2,a2),
q
=(a2,x)
,求關(guān)于x的不等式(
p
+
n
)•
q
<1
的解集.

查看答案和解析>>

同步練習(xí)冊答案