已知3a=5b=c,且
1
a
+
1
b
=2
,求c的值.
分析:依據(jù)題意可分別表示出
1
a
1
b
,進(jìn)而代入
1
a
+
1
b
=2
中求得c.
解答:解:由3a=c得:兩邊取對數(shù)可得:logc3a=logcc=1,
即alogc3=1,∴logc3=
1
a

同理可得
1
b
=logc5
,
∴由
1
a
+
1
b
=2
得logc3+logc5=2,
∴l(xiāng)ogc15=2,∴c2=15,
∵c>0,∴c=
15
點(diǎn)評:本題主要考查了對數(shù)函數(shù)的運(yùn)算以及指數(shù)函數(shù)與對數(shù)函數(shù)的綜合.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知3a=5b=c,且
1
a
+
1
b
=2
,設(shè)函數(shù)f(x)=x2-
4c2
15
x-4

(1)求c的值;
(2)記g(t)為函數(shù)f(x)在閉區(qū)間[t,t+1](r∈R)上的最小值,利用(1)中所求的c值,試寫出g(t)的函數(shù)表達(dá)式,并求出g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知3a=5b=c,且數(shù)學(xué)公式,設(shè)函數(shù)數(shù)學(xué)公式
(1)求c的值;
(2)記g(t)為函數(shù)f(x)在閉區(qū)間[t,t+1](r∈R)上的最小值,利用(1)中所求的c值,試寫出g(t)的函數(shù)表達(dá)式,并求出g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市師大附中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

已知3a=5b=c,且,設(shè)函數(shù)
(1)求c的值;
(2)記g(t)為函數(shù)f(x)在閉區(qū)間[t,t+1](r∈R)上的最小值,利用(1)中所求的c值,試寫出g(t)的函數(shù)表達(dá)式,并求出g(t)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都七中高三數(shù)學(xué)專項(xiàng)訓(xùn)練:反函數(shù)到奇偶性(解析版) 題型:解答題

已知3a=5b=c,且,求c的值.

查看答案和解析>>

同步練習(xí)冊答案