已知函數(shù)數(shù)學公式
(1)求反函數(shù)f-1(x);
(2)若數(shù)列{an}(an>0)的前n項和Sn滿足:a1=2,Sn=f-1(Sn-1)(n≥2)
①求數(shù)列{an}的通項公式.
②令數(shù)學公式,求數(shù)列{bn}前n項和Tn

解:(1)∵函數(shù)
,
兩邊平方,得8x=x2+y2+4-2xy-4y+4x,
整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.

=y+2+2=,
x,y互換,得
(2)①∵a1=2,Sn=f-1(Sn-1)(n≥2)


,

,
∴Sn=2n2,
∵a1=S1=2,
an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
當n=1時,4n-2=2=a1,
∴an=4n-2.
②∵,
且an=4n-2.
∴bn=4(2n+n)-2,
∴Tn=4(1+2+3+…+n)+4(2+22+23+…+2n)-2n

分析:(1)函數(shù),得,兩邊平方,并整理,得x2-(2y+4)x+y2-4y+4=0,x≥2.所以x=y+2+2=,x,y互換,得反函數(shù)f-1(x).
(2)①由,知Sn=2n2,由此能求出數(shù)列{an}的通項公式.
②由bn=4(2n+n)-2,由求出數(shù)列{bn}前n項和Tn
點評:本題考查反函數(shù)的求法、數(shù)列通項公式的求法和數(shù)列的前n項和的求法,解題時要認真審題,仔細解答,注意合理地進行等價轉(zhuǎn)化.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設函數(shù)f(x)=
px+1
x+1
,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項和sn=
1
2
(cn+
n
cn
).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=
-1
anSn2
,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2006•寶山區(qū)二模)已知f(x)=
10x+a10x+1
是奇函數(shù).
(1)求a的值;
(2)求f(x)的反函 數(shù) f-1(x),判斷f-1(x)的奇偶性,并給予證明;
(3)若函數(shù)y=F(x)是以2為周期的奇函數(shù),當x∈(-1,0)時,F(xiàn)(x)=f-1(x),求x∈(2,3)時F(x)的表達式.

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年上海市奉賢區(qū)高三(上)摸底數(shù)學試卷(理科)(解析版) 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設函數(shù)f(x)=,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正整數(shù)列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011年上海市黃浦區(qū)大境中學高三5月模擬數(shù)學試卷(理科)(解析版) 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設函數(shù)f(x)=,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2008年上海市八區(qū)聯(lián)考高考數(shù)學模擬試卷(理科)(解析版) 題型:解答題

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列bn,bn=f-1(n)若對于任意n∈N*都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反函數(shù)列”
(1)設函數(shù)f(x)=,若由函數(shù)f(x)確定的數(shù)列{an}的自反數(shù)列為{bn},求an
(2)已知正整數(shù)列{cn}的前項和sn=(cn+).寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當n≥2時,設dn=,Dn是數(shù)列{dn}的前n項和,且Dn>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

同步練習冊答案