圓C的方程為(x-2)2+y2=4,圓M的方程為(x-2-5cosθ)2+(y-5sinθ)2=1(θ∈R),過圓M上任意一點P作圓C的兩條切線PE、PF,切點分別為E、F,則
PE
PF
的最小值為
 
分析:由兩圓的圓心距|CM|=5大于兩圓的半徑之和可得兩圓相離,如圖所示,則
PE
PF
的最小值是
HE
HF
,利用兩個向量的數(shù)量積的定義求出
HE
HF
的值,即為所求.
解答:精英家教網(wǎng)解:(x-2)2+y2=4的圓心C(2,0),半徑等于2,圓M (x-2-5sinθ)2+(y-5cosθ)2=1,
圓心M(2+5sinθ,5cosθ),半徑等于1.
∵|CM|=
(5sinθ)2+(5cosθ)2
=5>2+1,故兩圓相離.
PE
PF
=|
PE
|•
|PF|
•cos∠EPF,要使 
PE
PF
最小,需 |
PE
| 和
|PF|
最小,且cos∠EPF 最大,
如圖所示,設直線CM 和圓M 交于H、G兩點,則
PE
PF
的最小值是
HE
HF

|H C|=|CM|-1=5-1=4,|H E|=
|HC|2-|CE|2
=
16-4
=2
3
,sin∠CHE=
|CE|
|CH|
=
1
2
,
∴cos∠EHF=cos2∠MHE=1-2sin2∠MHE=
1
2
,
HE
HF
=|H E|•|H E|•cos∠EHF=2
3
×2
3
×
1
2
=6,
故答案為:6.
點評:本題考查兩圓的位置關系,兩圓的切線,兩個向量的數(shù)量積的定義,二倍角的余弦公式,體現(xiàn)了數(shù)形結合的數(shù)學思想,判斷
PE
PF
的最小值是
HE
HF
,是解題的關鍵.考查分析解決問題的能力和運算能力,屬難題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

圓C的方程為(x-2)2+y2=4,圓M的方程為(x-2-5sinθ)2+(y-5cosθ)2=1(θ∈R),過圓C上任意一點P作圓M的兩條切線PE、PF,切點分別為E、F,則
PE
PF
的最小值是( 。
A、6
B、
56
9
C、7
D、
65
9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C經(jīng)過A(3,2)、B(1,2)兩點,且圓心在直線y=2x上,則圓C的方程為
(x-2)2+(y-4)2=5
(x-2)2+(y-4)2=5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2009•湖北模擬)圓C的方程為(x-2)2+y2=4,圓M的方程為(x-2-5cosθ)2+(y-5sinθ)2=1(θ∈R),過圓M上任意一點P作圓C的兩條切線PE,PF,切點分別是E,F(xiàn),則
PE
PF
的最小值是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知圓C的圓心與圓O:x2+y2=1的圓心關于直線l:x+y-2=0對稱,且圓C與直線l相切,則圓C的方程為
(x-2)2+(y-2)2=2
(x-2)2+(y-2)2=2

查看答案和解析>>

同步練習冊答案