A. | $\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$ | B. | $\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$ | C. | $f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$ | D. | $\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$ |
分析 根據(jù)條件構(gòu)造函數(shù)g(x)=$\frac{f(x)}{cosx}$,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和單調(diào)性之間的關(guān)系判斷函數(shù)g(x)的單調(diào)性即可.
解答 解:定義在$(0\;,\;\frac{π}{2})$上的函數(shù)f(x),恒有f(x)•tanx+f'(x)<0成立,
即f(x)•sinx+f'(x)cosx<0,
設(shè)g(x)=$\frac{f(x)}{cosx}$,
則g′(x)=$\frac{f′(x)cosx-f(x)(cosx)′}{cos^2x}$=$\frac{f′(x)cosx+f(x)sinx}{cos^2x}$<0,
則函數(shù)g(x)在$(0\;,\;\frac{π}{2})$上單調(diào)遞減,
則g($\frac{π}{3}$)<g($\frac{π}{6}$),
即$\frac{f(\frac{π}{3})}{cos\frac{π}{3}}$<$\frac{f(\frac{π}{6})}{cos\frac{π}{6}}$,
即$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$,
故選:D
點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)條件構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,1) | B. | (1,2) | C. | (3,+∞) | D. | [2,3) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2-i | B. | 1+2i | C. | 1-2i | D. | 2+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-2,-1] | B. | [-1,2] | C. | [-1,1] | D. | [1,2] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若a∥α,b∥α,則a∥b | B. | 若a⊥c,b⊥c,則a∥b | C. | 若a?α,b∥α,則a∥b | D. | a⊥α,b⊥α,則a∥b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (-1,3) | B. | (-∞,-3)∪(3,+∞) | C. | (-3,3) | D. | (-∞,-1)∪(3,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
生二胎 | 不生二胎 | 合計(jì) | |
70后 | 30 | 15 | 45 |
80后 | 45 | 10 | 55 |
合計(jì) | 75 | 25 | 100 |
P(x2≥k0) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
A. | 90% | B. | 95% | C. | 99% | D. | 99.9% |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com