15.定義在$(0\;,\;\frac{π}{2})$上的函數(shù)f(x),f'(x)是它的導(dǎo)函數(shù),且恒有f(x)•tanx+f'(x)<0成立,則( 。
A.$\sqrt{2}f(\frac{π}{3})>f(\frac{π}{4})$B.$\sqrt{3}f(\frac{π}{4})>\sqrt{2}f(\frac{π}{6})$C.$f(\frac{π}{3})>\sqrt{3}f(\frac{π}{6})$D.$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$

分析 根據(jù)條件構(gòu)造函數(shù)g(x)=$\frac{f(x)}{cosx}$,求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)和單調(diào)性之間的關(guān)系判斷函數(shù)g(x)的單調(diào)性即可.

解答 解:定義在$(0\;,\;\frac{π}{2})$上的函數(shù)f(x),恒有f(x)•tanx+f'(x)<0成立,
即f(x)•sinx+f'(x)cosx<0,
設(shè)g(x)=$\frac{f(x)}{cosx}$,
則g′(x)=$\frac{f′(x)cosx-f(x)(cosx)′}{cos^2x}$=$\frac{f′(x)cosx+f(x)sinx}{cos^2x}$<0,
則函數(shù)g(x)在$(0\;,\;\frac{π}{2})$上單調(diào)遞減,
則g($\frac{π}{3}$)<g($\frac{π}{6}$),
即$\frac{f(\frac{π}{3})}{cos\frac{π}{3}}$<$\frac{f(\frac{π}{6})}{cos\frac{π}{6}}$,
即$\sqrt{3}f(\frac{π}{3})<f(\frac{π}{6})$,
故選:D

點(diǎn)評(píng) 本題主要考查函數(shù)值的大小比較,根據(jù)條件構(gòu)造函數(shù),求函數(shù)的導(dǎo)數(shù),利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.方程log2x+x=3的解所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(3,+∞)D.[2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知${({x^{\frac{2}{3}}}+3{x^2})^n}$的展開(kāi)式中,各項(xiàng)系數(shù)和與它的二項(xiàng)式系數(shù)和的比為32.
(1)求展開(kāi)式中二項(xiàng)式系數(shù)最大的項(xiàng);
(2)求展開(kāi)式中所有的有理項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知復(fù)數(shù)a,b∈R,i是虛數(shù)單位,若a-i與2+bi互為共軛復(fù)數(shù),則a+bi=( 。
A.2-iB.1+2iC.1-2iD.2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知集合A={x|x2-2x-3≥0},B={x|-2≤x≤2},則A∩B=(  )
A.[-2,-1]B.[-1,2]C.[-1,1]D.[1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知三條直線a、b、c和平面α,下列結(jié)論正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a⊥c,b⊥c,則a∥bC.若a?α,b∥α,則a∥bD.a⊥α,b⊥α,則a∥b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知Sn是等比數(shù)列{an}的前n項(xiàng)和,${a_1}=\frac{1}{20},9{S_3}={S_6}$,設(shè)Tn=a1•a2•a3•…•an,則使得Tn取最小值時(shí),n的值為( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知函數(shù)f(x)=ln(ex+e-x)+x2,則使得f(2x)>f(x+3)成立的x的取值范圍是( 。
A.(-1,3)B.(-∞,-3)∪(3,+∞)C.(-3,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.2016年1月1日起全國(guó)統(tǒng)一實(shí)施全面兩孩政策,為了解適齡民眾對(duì)放開(kāi)生育二胎政策的態(tài)度,某市選取70后和80后作為調(diào)查對(duì)象,隨機(jī)調(diào)查了100位,得到數(shù)據(jù)如表:
生二胎不生二胎合計(jì)
70后301545
80后451055
合計(jì)7525100
根據(jù)以上調(diào)查數(shù)據(jù),認(rèn)為“生二胎與年齡有關(guān)”的把握有( 。
參考公式:x2=$\frac{n({n}_{11}{n}_{22}-{n}_{12}{n}_{21})^{2}}{{n}_{1}•{n}_{2}•n•1•n•2}$,其中n=n11+n12+n21+n22
參考數(shù)據(jù):
P(x2≥k00.150.100.050.0250.0100.005
k02.0722.7063.8415.0246.6357.879
A.90%B.95%C.99%D.99.9%

查看答案和解析>>

同步練習(xí)冊(cè)答案