已知橢圓C:的焦點(diǎn)為F1,F(xiàn)2,若點(diǎn)P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中為坐標(biāo)原點(diǎn)),則稱點(diǎn)P為“★點(diǎn)”,那么下列結(jié)論正確的是( )
A..橢圓上的所有點(diǎn)都是“★點(diǎn)”
B..橢圓上僅有有限個(gè)點(diǎn)是“★點(diǎn)”
C..橢圓上的所有點(diǎn)都不是“★點(diǎn)”
D..橢圓上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“★點(diǎn)”
【答案】分析:設(shè)橢圓上的點(diǎn)P(x,y),通過焦半徑公式,利用|PO|2=|PF1|•|PF2|,求出x,得到結(jié)果.
解答:解:設(shè)橢圓上的點(diǎn)P(x,y),|PF1|=2-ex,|PF2|=2+ex,因?yàn)閨PO|2=|PF1|•|PF2|,則有,解得,因此滿足條件的有四個(gè)點(diǎn),
故選B.
點(diǎn)評:本題主要考查橢圓的新定義問題,特別是焦半徑的轉(zhuǎn)化問題.考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知橢圓C的焦點(diǎn)在y軸上,且離心率為.過點(diǎn)M(0,3)的直線l與橢圓C相交于兩點(diǎn)AB.(1)求橢圓C的方程;(2)設(shè)P為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本題滿分12分)已知橢圓C的焦點(diǎn)在y軸上,且離心率為.過點(diǎn)M(0,3)的直線l與橢圓C相交于兩點(diǎn)AB.    (1)求橢圓C的方程;(2)設(shè)P為橢圓上一點(diǎn),且滿足O為坐標(biāo)原點(diǎn)),當(dāng)||<時(shí),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知橢圓C:數(shù)學(xué)公式的焦點(diǎn)為F1,F(xiàn)2,若點(diǎn)P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中為坐標(biāo)原點(diǎn)),則稱點(diǎn)P為“★點(diǎn)”,那么下列結(jié)論正確的是


  1. A.
    .橢圓上的所有點(diǎn)都是“★點(diǎn)”
  2. B.
    .橢圓上僅有有限個(gè)點(diǎn)是“★點(diǎn)”
  3. C.
    .橢圓上的所有點(diǎn)都不是“★點(diǎn)”
  4. D.
    .橢圓上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“★點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年安徽省高考數(shù)學(xué)沖刺試卷(理科)(解析版) 題型:選擇題

已知橢圓C:的焦點(diǎn)為F1,F(xiàn)2,若點(diǎn)P在橢圓上,且滿足|PO|2=|PF1|•|PF2|(其中為坐標(biāo)原點(diǎn)),則稱點(diǎn)P為“★點(diǎn)”,那么下列結(jié)論正確的是( )
A..橢圓上的所有點(diǎn)都是“★點(diǎn)”
B..橢圓上僅有有限個(gè)點(diǎn)是“★點(diǎn)”
C..橢圓上的所有點(diǎn)都不是“★點(diǎn)”
D..橢圓上有無窮多個(gè)點(diǎn)(但不是所有的點(diǎn))是“★點(diǎn)”

查看答案和解析>>

同步練習(xí)冊答案