16.已知集合A={x|a-1<x<1-a},B={x|x≤-1,或x≥1},若A∩B=∅,求實數(shù)a的取值范圍.

分析 根據(jù)A,B,以及兩集合的交集為空集,確定出a的范圍即可.

解答 解:∵A={x丨a-1<x<1-a},B={x丨x≤-1,或x≥1},且A∩B=∅,
∴當(dāng)A=∅時,則有a-1≥1-a,即a≥1,滿足題意;
當(dāng)A≠∅,可得a-1<1-a,即a<1時,
則有$\left\{\begin{array}{l}{a-1≥-1}\\{1-a≤1}\end{array}\right.$,
解得:a≥0,
綜上,a的范圍為a≥0.

點評 此題考查了交集及其運算,熟練掌握交集的定義是解本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知|$\overrightarrow{a}$|=4,|$\overrightarrow$|=$\sqrt{3}$,$\overrightarrow{a}$•$\overrightarrow$=6,求
(1)($\overrightarrow{a}$-$\overrightarrow$)•$\overrightarrow$;
(2)求|$\overrightarrow{a}$+$\overrightarrow$|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知數(shù)列{an}為等差數(shù)列,a1+a2+a3=3,a5+a6+a7=9,則a10=( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知函數(shù)f(x)=logax(a>1),在定義域[m,n](n>m)上的值域也為[m,n],則實數(shù)a的取值范圍為$1<a<{e^{\frac{1}{e}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知f(x+2)=x2+$\frac{1}{{x}^{2}}$,則f(3)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≥0\\ 1,{\;}^{\;}{\;}^{\;}x<0\end{array}\right.$的值域為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.化簡${[{(-\frac{1}{27})^{-2}}]^{\frac{1}{3}}}+{log_2}5-{log_2}10$的值得( 。
A.8B.10C.-8D.-10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線x2=4y的焦點F的坐標(biāo)為(0,1);若M是拋物線上一點,|MF|=5,O為坐標(biāo)原點,則cos∠MFO=-$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且Sn滿足:2Sn2-(3n2+3n-2)Sn-3(n2+n)=0,n∈N*
(Ⅰ)求a1的值;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)設(shè)bn=$\frac{a_n}{{{3^{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案