11.已知$\overrightarrow{m}$=(cosα,sinα),$\overrightarrow{n}$=(2,1),a∈(-$\frac{π}{2}$,$\frac{π}{2}$),若$\overrightarrow{m}$•$\overrightarrow{n}$=1,則sin(2a+$\frac{3π}{2}$)=$-\frac{7}{25}$.

分析 通過(guò)數(shù)量積推出三角函數(shù)關(guān)系,然后利用誘導(dǎo)公式化簡(jiǎn)所求的表達(dá)式,利用平方關(guān)系式,即可求出結(jié)果.

解答 解:$\overrightarrow m=(cosα,sinα)$,$\overrightarrow n=(2,1)$,$α∈({-\frac{π}{2},\frac{π}{2}})$,$\overrightarrow m•\overrightarrow n=1$,
可得2cosα+sinα=1.$α∈(-\frac{π}{2},0)$,又sin2α+cos2α=1,解得cosα=$\frac{4}{5}$,
$sin(2α+\frac{3π}{2})$=-cos2α=1-2cos2α=1-2×$(\frac{4}{5})^{2}$=$-\frac{7}{25}$.
故答案為:$-\frac{7}{25}$.

點(diǎn)評(píng) 本題考查誘導(dǎo)公式的應(yīng)用,三角函數(shù)的化簡(jiǎn)求值,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.“2<x<3”是“x>0”的( 。
A.充分而不必要條件B.必要而不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知cosα=$\frac{3}{5}$,cos(α+β)=$\frac{8}{17}$,α,β均為銳角,
(1)求sin2α的值;
(2)求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.?dāng)?shù)列{(4n+3)•($\frac{1}{3}$)n}的前n項(xiàng)和為Sn=$\frac{9}{2}$-$\frac{4n+9}{2•{3}^{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖,若輸入的x值為$\frac{π}{3}$,則相應(yīng)輸出的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.角α終邊經(jīng)過(guò)點(diǎn)P(1,$\sqrt{3}$),終邊與α終邊互為反向延長(zhǎng)線的角的集合是{β|β=$\frac{4π}{3}$+2kπ,k∈Z}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知?jiǎng)狱c(diǎn)M到點(diǎn)F(1,0)的距離與M到定直線x+1=0的距離相等,動(dòng)點(diǎn)M的軌跡為C,過(guò)點(diǎn)F且傾斜角等于45°的直線與軌跡C交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),則△OAB的面積等于( 。
A.3$\sqrt{2}$B.3$\sqrt{3}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若點(diǎn)($\sqrt{2}$,2)在冪函數(shù)f(x)的圖象上,點(diǎn)(2,$\frac{1}{2}$)在冪函數(shù)g(x)的圖象上,定義h(x)=$\left\{\begin{array}{l}{f(x),f(x)≤g(x)}\\{g(x),f(x)>g(x)}\end{array}\right.$求函數(shù)h(x)的最大值及單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.作出函數(shù)f(x)=|x-3|+$\sqrt{{x}^{2}+6x+9}$的圖象,并指出其單調(diào)區(qū)間.

查看答案和解析>>

同步練習(xí)冊(cè)答案