已知函數(shù),
,
.
(1)求證:函數(shù)在
上單調(diào)遞增;
(2)若函數(shù)有四個(gè)零點(diǎn),求
的取值范圍.
(1)詳見(jiàn)解析;(2)實(shí)數(shù)的取值范圍是
.
解析試題分析:(1)直接利用導(dǎo)數(shù)證明函數(shù)在
上單調(diào)遞增,在證明過(guò)程中注意導(dǎo)函數(shù)
的單調(diào)性;(2)將函數(shù)
的零點(diǎn)個(gè)數(shù)問(wèn)題轉(zhuǎn)化為函數(shù)圖象的交點(diǎn)個(gè)數(shù)問(wèn)題處理,但需注意將式子中的絕對(duì)值符號(hào)去掉,并借助函數(shù)
的最值出發(fā),構(gòu)造有關(guān)參數(shù)
的不等式組,再求解參數(shù)
的取值范圍.
試題解析:(1),
,
,
,
,所以
,且函數(shù)
在
上單調(diào)遞增,
故函數(shù)在
上單調(diào)遞增,
,即
,
故函數(shù)在
上單調(diào)遞增;
(2),
,
,當(dāng)
時(shí),
,則
,所以
且
,
,故函數(shù)
在
上單調(diào)遞減,由(1)知,函數(shù)
在
上單調(diào)遞增,
故函數(shù)在
處取得極小值,亦即最小值,即
,
令,則有
,則有
或
,
即方程與方程
的實(shí)根數(shù)之和為四,
則有,解得
或
,
綜上所述,實(shí)數(shù)的取值范圍是
.
考點(diǎn):1.函數(shù)的單調(diào)性;2.函數(shù)的零點(diǎn)個(gè)數(shù)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(Ⅰ)討論函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若函數(shù)
在區(qū)間
上的最大值為28,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),
.
(1)若且
,試討論
的單調(diào)性;
(2)若對(duì),總
使得
成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=x2 mlnx
(1)若函數(shù)f(x)在(,+∞)上是遞增的,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)m=2時(shí),求函數(shù)f(x)在[1,e]上的最大值和最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)
(1)求的值域;
(2)設(shè),函數(shù)
.若對(duì)任意
,總存在
,使
,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),(
)在
處取得最小值.
(Ⅰ)求的值;
(Ⅱ)若在
處的切線方程為
,求證:當(dāng)
時(shí),曲線
不可能在直線
的下方;
(Ⅲ)若,(
)且
,試比較
與
的大小,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)f(x)=ln-a
+x(a>0).
(Ⅰ)若=
,求f(x)圖像在x=1處的切線的方程;
(Ⅱ)若的極大值和極小值分別為m,n,證明:
.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com