精英家教網 > 高中數學 > 題目詳情
10、定義在R上的函數f(x)對任意的x都有f(x+3)≤f(x)+3和f(x+2)≥f(x)+2且f(1)=1,則f(2005)的值為( 。
分析:先根據f(x+3)≤f(x)+3,f(x+2)≥f(x)+2可得到 f(x+1)+2≤f(x+3)≤f(x)+3 和f(x+1)+1≥f(x+2)≥f(x)+2,進而可得到 f(x)+1≥f(x+1) 和f(x)+1≤f(x+1),即可得到 f(x+1)=f(x)+1,從而可得到f(2005)的值.
解答:解:∵f(x+3)≤f(x)+3,f(x+2)≥f(x)+2
∴f(x+1)+2≤f(x+3)≤f(x)+3
∴f(x)+1≥f(x+1) 
又∵f(x+1)+1≥f(x+2)≥f(x)+2
∴f(x)+1≤f(x+1)
∴f(x+1)=f(x)+1
∴f(2005)=2005
故選D.
點評:本題主要考查抽象函數的應用.屬基礎題.抽象函數也是高考的熱點問題,要強化復習.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

定義在R上的函數f(x)既是偶函數又是周期函數,若f(x)的最小正周期是π,且當x∈[0,
π
2
]時,f(x)=sinx,則f(
3
)的值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

20、已知定義在R上的函數f(x)=-2x3+bx2+cx(b,c∈R),函數F(x)=f(x)-3x2是奇函數,函數f(x)在x=-1處取極值.
(1)求f(x)的解析式;
(2)討論f(x)在區(qū)間[-3,3]上的單調性.

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的函數f(x)滿足:f(x+2)=
1-f(x)1+f(x)
,當x∈(0,4)時,f(x)=x2-1,則f(2010)=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)=Acos(ωx+φ)(A>0,ω>0,|φ|≤
π
2
),最大值與最小值的差為4,相鄰兩個最低點之間距離為π,函數y=sin(2x+
π
3
)圖象所有對稱中心都在f(x)圖象的對稱軸上.
(1)求f(x)的表達式;    
(2)若f(
x0
2
)=
3
2
(x0∈[-
π
2
,
π
2
]),求cos(x0-
π
3
)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)的圖象是連續(xù)不斷的,且有如下對應值表:
x 0 1 2 3
f(x) 3.1 0.1 -0.9 -3
那么函數f(x)一定存在零點的區(qū)間是( 。

查看答案和解析>>

同步練習冊答案