已知函數(shù)f(x)=-x2+ax+1-lnx.且在x=1處取得極值;
(Ⅰ)求a的值;并求函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.
(Ⅰ)要使函數(shù)有意義,則x>0.
函數(shù)的導(dǎo)數(shù)為f′(x)=-2x+a-
1
x
,因?yàn)楹瘮?shù)在x=1處取得極值,所以f'(1)=-2+a-1=0,解得a=3.
所以f(x)=-x2+3x+1-lnx,f′(x)=-2x+3-
1
x
,
所以f(2)=-4+6+1-ln2=3-ln2,f′(2)=-4+3-
1
2
=-
3
2

所以函數(shù)f(x)在點(diǎn)(2,f(2))處的切線方程為y-(3-ln2)=-
3
2
(x-2)
,即y=-
3
2
x+6+ln2

(Ⅱ)由(Ⅰ)知f′(x)=-2x+3-
1
x
=
-2x2+3x-1
x
,
f′(x)=
-2x2+3x-1
x
>0
,即2x2-3x+1<0,解得
1
2
<x<1

即函數(shù)的增區(qū)間為(
1
2
,1
).
f′(x)=
-2x2+3x-1
x
<0
,得2x2-3x+1>0,解得0<x<
1
2
或x>1
,
即函數(shù)的減區(qū)間為(0,
1
2
)和(1,+∞).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對(duì)稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對(duì)于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案