已知i是虛數(shù)單位,則復(fù)數(shù)z=
-3+i
2+i
的共軛復(fù)數(shù)是
 
考點(diǎn):復(fù)數(shù)代數(shù)形式的乘除運(yùn)算
專(zhuān)題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的四則運(yùn)算進(jìn)行化簡(jiǎn),即可得到結(jié)論.
解答: 解z=
-3+i
2+i
=
(-3+i)(2-i)
(2-i)(2+i)
=
-5+5i
5
=-1+i
,
則z的共軛復(fù)數(shù)
.
z
=-1-i
,
故答案為:-1-i
點(diǎn)評(píng):本題主要考查復(fù)數(shù)的有關(guān)概念,利用復(fù)數(shù)的四則運(yùn)算先進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三點(diǎn)A(-
1
2
,0),B(2,0),P(sin(2x-
π
3
),cos(2x-
π
3
))(
π
12
≤x≤
π
4

(1)求△ABP面積的最小值;
(2)在(1)的條件下,求∠ABP的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知復(fù)數(shù)z滿(mǎn)足(
3
+3i)z=3i,則z的虛部=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給出下列五個(gè)命題:
①函數(shù)y=2sin(2x-
π
3
)的一條對(duì)稱(chēng)軸是x=
12

②函數(shù)y=tan2x的圖象關(guān)于點(diǎn)(
π
4
,0)對(duì)稱(chēng);
③正弦函數(shù)在第一象限為增函數(shù);
④若銳角α終邊上一點(diǎn)的坐標(biāo)為(2sin3,-2cos3),則α=3-
π
2

⑤函數(shù)f(x)=x-sinx有3個(gè)零點(diǎn);
以上五個(gè)命題中正確的有
 
(填寫(xiě)正確命題前面的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在下面演繹推理中:“∵|sinx|≤1,又m=sinα,∴|m|≤1”,大前提是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)
2a
x+
b
y=1(其中a,b為正實(shí)數(shù))與圓x2+y2=1相相交于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn),且△AOB為直角三角形,則a2+b2-2(a+b)取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

log510+log52.5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=kx是y=1nx-3的切線(xiàn),則k的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,M是拋物線(xiàn)C上的點(diǎn),若△OFM的外接圓與拋物線(xiàn)C的準(zhǔn)線(xiàn)相切,且該圓面積為36π,則p=(  )
A、2B、4C、6D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案