4、“m>n>0”是“方程mx2+ny2=1表示焦點在x軸上的橢圓”的( 。
分析:由“m>n>0”,知“方程mx2+ny2=1表示焦點在y軸上的橢圓”;由“方程mx2+ny2=1表示焦點在x軸上的橢圓”,知“n>m>0”.所以“m>n>0”是“方程mx2+ny2=1表示焦點在x軸上的橢圓”的既不充分也不必要條件.
解答:解:∵“m>n>0”?“方程mx2+ny2=1表示焦點在y軸上的橢圓”,
“方程mx2+ny2=1表示焦點在x軸上的橢圓”?“n>m>0”,
∴“m>n>0”是“方程mx2+ny2=1表示焦點在x軸上的橢圓”的既不充分也不必要條件.
故選C.
點評:本題考查必要條件、充分條件與充要條件的判斷,解題時要認真審題,注意橢圓的定義和性質(zhì)的合理運用.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

精英家教網(wǎng)給出下列四個命題:
①已知函數(shù)y=2sin(x+φ)(0<φ<π)的圖象如圖所示,則?=
π
6
5
6
π
;
②已知O、A、B、C是平面內(nèi)不同的四點,且
OA
OB
OC
,則α+β=1是A、B、C三點共線的充要條件;
③若數(shù)列an恒滿足
a
2
n+1
a
2
n
=p
(p為正常數(shù),n∈N*),則稱數(shù)列an是“等方比數(shù)列”.根據(jù)此定義可以斷定:若數(shù)列an是“等方比數(shù)列”,則它一定是等比數(shù)列;
④求解關(guān)于變量m、n的不定方程3n-2=2m-1(n,m∈N*),可以得到該方程中變量n的所有取值的表達式為n=
1
12
(4k+8)

(k∈N*).
其中正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足an+12-an2=d(其中d是常數(shù),n∈N﹡),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若數(shù)列{an}滿足
a
2
n+1
-
a
2
n
=d(其中d是常數(shù),n∈N),則稱數(shù)列{an}是“等方差數(shù)列”.已知數(shù)列{bn}是公差為m的差數(shù)列,則m=0是“數(shù)列{bn}是等方差數(shù)列”的
充要條件
充要條件
條件.(填充分不必要、必要不充分、充要條件、既不充分也不必要條件中的一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知M(4,0),N(1,0)若動點P滿足
MN
MP
=6|
NP
|

(1)求動點P的軌跡方C的方程;
(2)設(shè)Q是曲線C上任意一點,求Q到直線l:x+2y-12=0的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列四個命題:
①樣本方差反映的是所有樣本數(shù)據(jù)與樣本平均值的偏離程度;
②某只股票經(jīng)歷了10個跌停(下跌10%)后需再經(jīng)過10個漲停(上漲10%)就可以回到原來的凈值;
③某校高三一級部和二級部的人數(shù)分別是m、n,本次期末考試兩級部數(shù)學平均分分別是a、b,則這兩個級部的數(shù)學平均分為
na
m
+
mb
n
;
④某中學采用系統(tǒng)抽樣方法,從該校高一年級全體800名學生中抽50名學生做牙齒健康檢查,現(xiàn)將800名學生從l到800進行編號.已知從497~513這16個數(shù)中取得的學生編號是503,則初始在第1小組1~16中隨機抽到的學生編號是7.
其中真命題的個數(shù)是(  )
A、0個B、1個C、2個D、3個

查看答案和解析>>

同步練習冊答案