正項(xiàng)等比數(shù)列{an}與等差數(shù)列{bn}滿足a1=b1,a7=b7且a1≠a7,則a4,b4的大小關(guān)系為   
【答案】分析:先根據(jù)等差中項(xiàng)的性質(zhì)可知a1+a7=b1+b7=2b4,進(jìn)而根據(jù)基本不等式 ,進(jìn)而根據(jù)a1+a7=b1+b7,答案可得.
解答:解:∵a1=b1,a7=b7
∴a1+a7=b1+b7=2b4,
∵a4==b4,當(dāng)?shù)忍柍闪r(shí)有a1=a7,此時(shí)須有q=1,與已知矛盾,故等號不可能成立
∴a4<b4,
故答案為a4<b4
點(diǎn)評:本題主要考查了等差數(shù)列的性質(zhì).有些同學(xué)做錯,是因?yàn)椴荒莒`活運(yùn)用等差中項(xiàng)和等比中項(xiàng)的定義及基本不等式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在正項(xiàng)等比數(shù)列{an}中a2•a8=6,a4+a6=5,an+1<an,則
a5
a7
=(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項(xiàng)等比數(shù)列{an}的前n項(xiàng)和為Sn且,a2a4=1,S3=13,若bn=log3an,則bn等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正項(xiàng)等比數(shù)列{an}中,公比q=2,且
a
2
3
-2a3a5+a4a6=16
,則a3-a5等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(文) 已知正項(xiàng)等比數(shù)列{an}中,a1a5=2,則a3=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)正項(xiàng)等比數(shù)列{an}的公比為q,且
S3
a3
=7,則公比q
=( 。

查看答案和解析>>

同步練習(xí)冊答案