(本小題滿分12分)已知點
,過點
作拋物線
的切線
,切點
在第二象限,如圖.
(Ⅰ)求切點
的縱坐標;
(Ⅱ)若離心率為
的橢圓
恰好經(jīng)過切點
,設切線
交橢圓的另一點為
,記切線
的斜率分別為
,若
,求橢圓方程.
解:(Ⅰ)設切點
,且
,
由切線
的斜率為
,得
的方程為
,又點
在
上,
,即點
的縱坐標
.
(Ⅱ)由(Ⅰ) 得
,切線斜率
,
設
,切線方程為
,由
,得
,所以橢圓方程為
,且過
,
由
,
,
將
,
代入得:
,所以
,
橢圓方程為
.
練習冊系列答案
相關習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分10分)已知曲線
上的動點
滿足到點
的距離比到直線
的距離小
.
(1)求曲線
的方程;
(2)動點
在直線
上,過點
作曲線
的切線
,切點分別為
、
.
(ⅰ)求證:直線
恒過一定點,并求出該定點的坐標;
(ⅱ)在直線
上是否存在一點
,使得
為等邊三角形(
點也在直線
上)?若存在,求出點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(12分)從圓
:
外一動點
向圓
引一條切線,切點為
,且
(
為坐標原點),求
的最小值和
取得最小值時點
的坐標.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)已知橢圓
的中心在原點,焦點在
軸上,點
分別是橢圓的左、右焦點,在直線
(
分別為橢圓的長半軸和半焦距的長)上的點
,滿足線段
的中垂線過點
.過原點
且斜率均存在的直線
、
互相垂直,且截橢圓所得的弦長分別為
、
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)求
的最小值及取得最小值時直線
、
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知
是橢圓
的左、右焦點,過點
作
傾斜角為
的動直線
交橢圓于
兩點.當
時,
,且
.
(1)求橢圓的離心率及橢圓的標準方程;
(2)求△
面積的最大值,并求出使面積達到最大值時直線
的方程.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)
如圖,已知橢圓
C1的中心在原點
O,長軸左、右端點
M,
N在
x軸上,橢圓
C2的短軸為
MN,且
C1,
C2的離心率都為
e,直線
l⊥MN,
l與
C1交于兩點,與
C2交于兩點,這四點按縱坐標從大到小依次為
A,
B,
C,
D.
(I)設
,求
與
的比值;
(II)當
e變化時,是否存在直線
l,使得
BO∥
AN,并說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
已知拋物線C的頂點在坐標原點,焦點在x軸上,直線
與拋物線C相交
于A,B兩點,若
是AB的中點,則拋物線C的方程為_______________.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
.如題(15)圖,在等腰梯形
中,
且
,設
,以
、
為焦點且過點
的雙曲線的離心率為
,以
、
為焦點且過點
的橢圓的離心率為
,則
=__________
查看答案和解析>>