【題目】如圖1,在三棱錐P﹣ABC中,PA⊥平面ABC,AC⊥BC,D為側(cè)棱PC上一點(diǎn),它的正(主)視圖和側(cè)(左)視圖如圖2所示.
(1)證明:AD⊥BC;
(2)求三棱錐D﹣ABC的體積.

【答案】
(1)證明:因?yàn)镻A⊥平面ABC,所以PA⊥BC,

又AC⊥BC,所以BC⊥平面PAC,

所以BC⊥AD

由三視圖可得,

在△PAC中,PA=AC=4,D為PC中點(diǎn),

所以AD⊥PC,

所以AD⊥平面PBC

又因?yàn)锽C面PBC,

故AD⊥BC


(2)解:由三視圖可得BC=4,

由(1)知∠ADC=90°,BC⊥平面PAC

又三棱錐D﹣ABC的體積即為三棱錐B﹣ADC的體積,

所以,所求三棱錐的體積


【解析】(1)先證明BC⊥平面PAC,再證明AD⊥平面PBC,進(jìn)而可得AD⊥BC;(2)三棱錐D﹣ABC的體積即為三棱錐B﹣ADC的體積,進(jìn)而得到答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解由三視圖求面積、體積(求體積的關(guān)鍵是求出底面積和高;求全面積的關(guān)鍵是求出各個(gè)側(cè)面的面積).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在R上定義運(yùn)算⊙:a⊙b=ab+2a+b,則滿足x⊙(x﹣2)<0的實(shí)數(shù)x的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是梯形, , , ,側(cè)面底面.

(1)求證:平面平面;

(2)若與底面所成角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在公差不為零的等差數(shù)列{an}和等比數(shù)列{bn}中.已知a1=b1=1.a(chǎn)2=b2 . a6=b3
(1)求等差數(shù)列{an}的通項(xiàng)公式an和等比數(shù)列{bn}的通項(xiàng)公式bn;
(2)求數(shù)列{anbn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB則下列結(jié)論正確的是(
A.PB⊥AD
B.平面PAB⊥平面PBC
C.直線BC∥平面PAE
D.直線PD與平面ABC所成的角為45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐E﹣ABCD中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求棱錐C﹣ADE的體積;
(2)在線段DE上是否存在一點(diǎn)P,使AF∥平面BCE?若存在,求出 的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(1+tan21°)(1+tan22°)(1+tan23°)(1+tan24°)的值是(
A.16
B.8
C.4
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知不等式組 表示的平面區(qū)域?yàn)镈,若(x,y)∈D,|x|+2y≤a為真命題,則實(shí)數(shù)a的取值范圍是(
A.[10,+∞)
B.[11,+∞)
C.[13,+∞)
D.[14,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題: ①“若a2<b2 , 則a<b”的否命題;
②“全等三角形面積相等”的逆命題;
③“若a>1,則ax2﹣2ax+a+3>0的解集為R”的逆否命題;
④“若 x(x≠0)為有理數(shù),則x為無理數(shù)”的逆否命題.
其中正確的命題是(
A.③④
B.①③
C.①②
D.②④

查看答案和解析>>

同步練習(xí)冊答案