(1)求原點到直線l1:5x-12y-9=0的距離;

(2)求點P(-1,2)到直線l2:2x+y-10=0的距離.

解:(1)原點到直線l1的距離d=;

(2)點P到直線l2的距離d==2.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

本題設(shè)有(1)、(2)、(3)三個選考題,每題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分,作答時,先用2B鉛筆在答題卡上把所選題目對應(yīng)的題號涂黑,并將所選題號填入括號中.
(1)選修4-2:矩陣與變換
設(shè)矩陣 M=
a0
0b
(其中a>0,b>0).
(Ⅰ)若a=2,b=3,求矩陣M的逆矩陣M-1;
(Ⅱ)若曲線C:x2+y2=1在矩陣M所對應(yīng)的線性變換作用下得到曲線C′:
x2
4
+y2=1
,求a,b的值.
(2)(本小題滿分7分)選修4-4:坐標系與參數(shù)方程
在直接坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cos∂
y=sin∂
(∂為參數(shù))

(Ⅰ)已知在極坐標(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
),判斷點P與直線l的位置關(guān)系;
(Ⅱ)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
(3)(本小題滿分7分)選修4-5:不等式選講
設(shè)不等式|2x-1|<1的解集為M.
(Ⅰ)求集合M;
(Ⅱ)若a,b∈M,試比較ab+1與a+b的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知直線l:mx-y-2m-1=0,m是實數(shù).
(I)直線l恒過定點P,求定點P的坐標;
(II)若原點到直線l的距離是2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•蘭州一模)在直角坐標系xOy中,直線l的方程為x-y+4=0,曲線C的參數(shù)方程為
x=
3
cosα
y=sinα

(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為(4,
π
2
)
,判斷點P與直線l的位置關(guān)系;
(2)設(shè)點Q是曲線C上的一個動點,求它到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知在直角坐標系xOy中,直線l的參數(shù)方程為
x=t-3
y=
3
t
(t為參數(shù)),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,曲線C的極坐標方程為ρ2-4ρcosθ+3=0.
(1)求直線l普通方程和曲線C的直角坐標方程;
(2)設(shè)點P是曲線C上的一個動點,求它到直線l的距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•珠海二模)(文)在△ABC中,A點的坐標為(3,0),BC邊長為2,且BC在y軸上的區(qū)間[-3,3]上滑動.
(1)求△ABC外心的軌跡方程;
(2)設(shè)直線l:y=3x+b與(1)的軌跡交于E,F(xiàn)兩點,原點到直線l的距離為d,求
|EF|d
的最大值.并求出此時b的值.

查看答案和解析>>

同步練習冊答案