已知數(shù)列{an}中,Sn是它的前n項(xiàng)和,并且Sn+1=4an+2(n=1,2,…),a1=1
(1)設(shè)bn=an+1-2an(n=1,2,…),求證{bn}是等比數(shù)列;
(2)設(shè)cn=(n=1,2,…),求證{cn}是等差數(shù)列;
(3)求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和公式.
解:(1)∵Sn+1=4an+2 ① ∴Sn+2=4an+1+2 ② ②-①得Sn+2-Sn+1=4an+1-4an(n=1,2,…),即an+2=4an+1-4an an+2-2an+1=2(an+1-2an) ∵bn=an+1-2an(n=1,2,…) ∴bn+1=2bn 由此可知,數(shù)列{bn}是公比為2的等比數(shù)列. 由S2=a1+a2= ∴b1=a2- (2)∵cn= (n=1,2,…),∴cn+1-cn= 將bn=3·2n-1代入,得cn+1-cn=(n=1,2,…) 由此可知:數(shù)列{cn}是公差為的等差數(shù)列,c1== ,故cn=+ (3)∵cn= ∴an=2n·cn=(3n-1)·2n-2(n=1,2,…) 當(dāng)n≥2時(shí),Sn=4an-1+2=(3n-4)·2n-1+2. 由于S1=a1=1也適合于此式,∴前n項(xiàng)公式為Sn=(3n-4)·2n-1+2 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
an |
1+2an |
1 |
2n-1 |
1 |
2n-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
n+1 |
2 |
2n |
an |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
1 |
an |
lim |
n→∞ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com