函數(shù)f(x)=log0.5(x2-4)的單調(diào)增區(qū)間為
 
考點:復(fù)合函數(shù)的單調(diào)性
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:求函數(shù)的定義域,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系進行求解即可.
解答: 解:由x2-4>0得x>2或x<-2,
設(shè)t=x2-4,則y=log0.5t為減函數(shù),
要求函數(shù)f(x)的遞增區(qū)間,即求函數(shù)t=x2-4的遞減區(qū)間,
∵函數(shù)t=x2-4的遞減區(qū)間為(-∞,-2),
∴函數(shù)f(x)=log0.5(x2-4)的單調(diào)增區(qū)間為(-∞,-2),
故答案為:(-∞,-2)
點評:本題主要考查函數(shù)單調(diào)區(qū)間的求解,根據(jù)復(fù)合函數(shù)單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
|x+1|+|x-a|-2
(a∈R)

(1)若a=3,解不等式f(x)≥2;
(2)若f(x)的定義域為R,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=sinωx(0<ω<2)在區(qū)間[0,
π
3
]上單調(diào)遞增,在區(qū)間[
π
3
,
π
2
]上單調(diào)遞減,則ω等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a15=-10,d=2,求S20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知矩陣A=
30
2a
,A的逆矩陣A-1=
1
3
0
b1

(1)求a,b的值;  
(2)求A的特征值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合M={x|2x≤4},N={x|x(1-x)>0},則∁MN=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一組數(shù)1,1,2,3,5,8,x,21,34,55,按這組數(shù)規(guī)律,x應(yīng)為(  )
A、11B、12C、13D、14

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩所學(xué)校高三級某學(xué)年10次聯(lián)合考試的理科數(shù)學(xué)成績平均分用莖葉圖如圖所示,則甲乙兩所學(xué)校的平均分
.
x
及方差s2的大小關(guān)系為(  )
A、
.
x
.
x
,s2>s2
B、
.
x
.
x
,s2<s2
C、
.
x
.
x
,s2<s2
D、
.
x
.
x
,s2>s2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在?ABCD中,點M在AB上,且AM=3MB,點N在BD上,且
BN
BD
,C、M、N三點共線,求λ的值.

查看答案和解析>>

同步練習(xí)冊答案