某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為
34
,且各次射擊的結(jié)果互不影響.
(1)求射手在3次射擊中,3次都擊中目標(biāo)的概率(用數(shù)字作答);
(2)求射手在3次射擊中,恰有兩次連續(xù)擊中目標(biāo)的概率(用數(shù)字作答);
(3)求射手第3次擊中目標(biāo)時(shí),恰好射擊了4次的概率(用數(shù)字作答).
分析:(1)記事件“射手在3次射擊中,3次都擊中目標(biāo)”為事件A,則P(A)=(
3
4
)
3
,計(jì)算可得結(jié)果.
(2)記事件“射手在3次射擊中,恰有兩次連續(xù)擊中目標(biāo)”為事件B,則 P(B)=2×(
3
4
)
2
1
4
,計(jì)算可得結(jié)果.
(3)記事件“射手第3次擊中目標(biāo)時(shí),恰好射擊了4次”為事件C,則P(C)= 
 C
1
3
1
4
(
3
4
)
3
,計(jì)算可得結(jié)果.
解答:解:(1)記事件“射手在3次射擊中,3次都擊中目標(biāo)”為事件A,P(A)=(
3
4
)3=
27
64
.…(4分)
(2)記事件“射手在3次射擊中,恰有兩次連續(xù)擊中目標(biāo)”為事件B,則P(B)=2×(
3
4
)
2
1
4
=
9
32
.…(8分)
(3)記事件“射手第3次擊中目標(biāo)時(shí),恰好射擊了4次”為事件C,則此事件說明在前3次射擊中,由一次沒有擊中目標(biāo),
P(C)= 
 C
1
3
1
4
(
3
4
)
3
=
81
256
.…(12分)
點(diǎn)評:本題主要考查n次獨(dú)立重復(fù)實(shí)驗(yàn)中恰好發(fā)生k次的概率,等可能事件的概率,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為
35
,且各次射擊的結(jié)果互不影響,
(1)求該射手在3次射擊中,至少有2次連續(xù)擊中目標(biāo)的概率;
(2)求該射手在3次射中目標(biāo)時(shí),恰好射擊了4次的概率;
(3)設(shè)隨機(jī)變量ξ表示該射手第3次擊中目標(biāo)時(shí)已射擊的次數(shù),求ξ的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為
35
,且各次射擊的結(jié)果互不影響.
(1)求射手在3次射擊中,至少有兩次連續(xù)擊中目標(biāo)的概率(用數(shù)字作答);
(2)求射手第3次擊中目標(biāo)時(shí),恰好射擊了4次的概率(用數(shù)字作答);

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為,且各次射擊的結(jié)果互不影響。

(1)求射手在3次射擊中,至少有兩次連續(xù)擊中目標(biāo)的概率(用數(shù)字作答);

(2)求射手第3次擊中目標(biāo)時(shí),恰好射擊了4次的概率(用數(shù)字作答);

(3)設(shè)隨機(jī)變量表示射手第3次擊中目標(biāo)時(shí)已射擊的次數(shù),求的分布列。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年天津南開區(qū)質(zhì)檢一理)(12分)

某射手進(jìn)行射擊訓(xùn)練,假設(shè)每次射擊擊中目標(biāo)的概率為,且各次射擊的結(jié)果互不影響。

(1)求射手在3次射擊中,至少有兩次連續(xù)擊中目標(biāo)的概率(用數(shù)字作答);

(2)求射手第3次擊中目標(biāo)時(shí),恰好射擊了4次的概率(用數(shù)字作答);

(3)設(shè)隨機(jī)變量表示射手第3次擊中目標(biāo)時(shí)已射擊的次數(shù),求的分布列。

查看答案和解析>>

同步練習(xí)冊答案